Does Proxima Centauri Create an Environment Too Horrifying for Life?

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Artist’s impression of the exoplanet Proxima Centauri b. (ESO/M. Kornmesser)

 

In 2016, the La Silla Observatory in Chile spotted evidence of possibly the most eagerly anticipated exoplanet in the Galaxy. It was a world orbiting the nearest star to the sun, Proxima Centauri, making this our closest possible exoplanet neighbour. Moreover, the planet might even be rocky and temperate.

Proxima Centauri b had been discovered by discerning a periodic wobble in the motion of the star. This revealed a planet with a minimum mass 30% larger than the Earth and an orbital period of 11.2 days. Around our sun, this would be a baking hot world.

But Proxima Centauri is a dim red dwarf star and bathes its closely orbiting planet in a level of radiation similar to that received by the Earth. If the true mass of the planet was close to the measured minimum mass, this meant Proxima Centauri b would likely be a rocky world orbiting within the habitable zone.

 

Comparison of the orbit of Proxima Centauri  b with the same region of the solar system. Proxima Centauri is smaller and cooler than the sun and the planet orbits much closer to its star than Mercury. As a result it lies well within the habitable zone. (ESO/M. Kornmesser/G. Coleman.)

Sitting 4.2 light years from our sun, a journey to Proxima Centauri b is still prohibitively long.

But as our nearest neighbor, the exoplanet is a prime target for the upcoming generation of telescopes that will attempt to directly image small worlds. Its existence was also inspiration for privately funded projects to develop faster space travel for interstellar distances.

Yet observations taken around the same time as the La Silla Observatory discovery were painting a very different picture of Proxima Centauri. It was a star with issues.

This set of observations were taken with Evryscope; an array of small telescopes that was watching stars in the southern hemisphere. What Evryscope spotted was a flare from Proxima Centauri that was so bright that the dim red dwarf star became briefly visible to the naked eye.

Flares are the sudden brightening in the atmosphere of a star that release a strong burst of energy. They are often accompanied by a large expulsion of plasma from the star known as a “coronal mass ejection”. Flares from the sun are typically between 1027 – 1032 erg of energy, released in a few tens of minutes.

For comparison, a hydrogen bomb releases the equivalent of about 10 megatons of TNT or a mere 4 x 1023 erg. Hitting the Earth, energy from solar flares and coronal mass ejections can disrupt communication equipment and create a spectacular aurora.

A solar flare erupting from the right side of the sun. (NASA/SDO)

But the Proxima super-flare spotted by Evryscope was well beyond a regular stellar flare.

On March 18 in 2016, this tiny red dwarf emitted an energy belch of 1033.5 erg. The flare consisted of one major event and three weaker ones and lasted approximately one hour, during which time Proxima Centauri became 68 times brighter.

A sudden, colossal increase in the brightness of a star does not bode well for any closely orbiting planets.

However, such a major flare might well be rare. If the star was normally fairly quiet, perhaps a planet could recover from a single very disruptive flare in the same way the Earth has survived mass extinction events.

Led by graduate student Ward Howard at the University of North Carolina, Chapel Hill, the discovering team used Evryscope to monitor Proxima Centauri for flares for a total of 1344 hours between January 2016 and March 2018. What they found was a horrifying environment, as reported in The Astrophysical Journal Letters.

While an event on the scale of the Proxima super-flare was only seen once, 24 large eruptions were spotted from the red dwarf, with energies from 1030.5 to 1032.4 erg. Allowing for the fact the star had only been observed for a small part of the year, this pattern of energy outbursts meant that a massive super-flare (1033 erg) was likely to occur at least five times annually.

 

Artist’s impression of the surface of the planet Proxima Centauri b. But what would conditions be like so close to a flaring star? (ESO/M. Kornmesser)

 

But how important is this for the planet?

The Earth is protected from flares from our sun by our atmosphere. The ozone layer absorbs harmful ultraviolet radiation with wavelengths between about 2400 – 2800 Angstroms (10-10 m), preventing it reaching the surface. So what if Proxima Centauri b had a similar protective layer of gases as the Earth?

To answer this question, Howard and his team ran simulations of an Earth-like atmosphere on Proxima Centauri b.

As is the case for the sun, the team assumed that large flares would be frequently accompanied by a coronal mass ejection. Radiation and stellar material then flooded over an Earth-like Proxima Centauri b at the observed rate. And the atmosphere crumbled.

 

Ward Howard, astrophysicist at the University of North Carolina.

High energy particles in the coronal mass ejections split the nitrogen molecules (N2) in the atmosphere, which reacted with the ozone (O3) to form nitrogen oxide (NO2). After just 5 years, 90% of the ozone in the atmosphere was lost and the amount was still decreasing.

Without ozone, the surface of Proxima Centauri b would be stripped of its protection from UV radiation. During the Proxima super-flare, the radiation dose without the protective ozone would be 65 times larger than that needed to kill 90% of one of the most UV-resilient organisms on Earth.

“Life would have to undergo extreme adaptation to UV or exist underground or underwater,” Howard notes. “Only the most resistant organisms could survive on the surface in this environment.”

The simulation does assume that Proxima Centauri b does not have a magnetic field. Such a shield could channel the particles from the coronal mass ejection to the poles, forming the aurora as on Earth and reducing the damage to the atmosphere.

However, orbiting so close to the star, Proxima Centauri b is likely to be in tidal lock as the moon is to the Earth. This is expected to weaken the magnetic field, as the slower rotation makes it harder to create a magnetic dynamo within the planet.

So if the protective shields are lowered on Proxima Centauri b, is our nearest planet a world populated by highly resistant UV organisms? Or have we seen evidence that rather than warming the planet to allow life to exist, this star has snuffed it out?

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

What Would Happen If Mars And Venus Swapped Places?

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Venus, Earth and Mars (ESA).

 

What would happen if you switched the orbits of Mars and Venus? Would our solar system have more habitable worlds?

It was a question raised at the “Comparative Climatology of Terrestrial Planets III”; a meeting held in Houston at the end of August. It brought together scientists from disciplines that included astronomers, climate science, geophysics and biology to build a picture of what affects the environment on rocky worlds in our solar system and far beyond.

The question regarding Venus and Mars was proposed as a gedankenexperiment or “thought experiment”; a favorite of Albert Einstein to conceptually understand a topic. Dropping such a problem before the interdisciplinary group in Houston was meat before lions: the elements of this question were about to be ripped apart.

The Earth’s orbit is sandwiched between that of Venus and Mars, with Venus orbiting closer to the sun and Mars orbiting further out. While both our neighbors are rocky worlds, neither are top picks for holiday destinations.

Mars has a mass of just one-tenth that of Earth, with a thin atmosphere that is being stripped by the solar wind; a stream of high energy particles that flows from the sun. Without a significant blanket of gases to trap heat, temperatures on the Martian surface average at -80°F (-60°C). Notably, Mars orbits within the boundaries of the classical habitable zone (where an Earth-like planet could maintain surface water)  but the tiny planet is not able to regulate its temperature as well as the Earth might in the same location.

 

The classical habitable zone around our sun marks where an Earth-like planet could support liquid water on the surface (Cornell University).

 

Unlike Mars, Venus has nearly the same mass as the Earth. However, the planet is suffocated by a thick atmosphere consisting principally of carbon dioxide. The heat-trapping abilities of these gases soar surface temperatures to above a lead-melting 860°F (460°C).

But what if we could switch the orbits of these planets to put Mars on a warmer path and Venus on a cooler one? Would we find that we were no longer the only habitable world in the solar system?

“Modern Mars at Venus’s orbit would be fairly toasty by Earth standards,” suggests Chris Colose, a climate scientist based at the NASA Goddard Institute for Space Studies and who proposed the topic for discussion.

Dragging the current Mars into Venus’s orbit would increase the amount of sunlight hitting the red planet. As the thin atmosphere does little to affect the surface temperature, average conditions should rise to about 90°F (32°C), similar to the Earth’s tropics. However, Mars’s thin atmosphere continues to present a problem.

Colose noted that without a thicker atmosphere or ocean, heat would not be transported efficiently around Mars. This would lead to extreme seasons and temperature gradients between the day and night. Mars’s thin atmosphere produces a surface pressure of just 6 millibars, compared to 1 bar on Earth. At such low pressures, the boiling point of water plummets to leave all pure surface water frozen or vaporized.

Mars does have have ice caps consisting of frozen carbon dioxide, with more of the greenhouse gas sunk into the soils. A brief glimmer of hope for the small world arose in the discussion with the suggestion these would be released at the higher temperatures in Venus’s orbit, providing Mars with a thicker atmosphere.

 

The surface of Mars captured by a selfie taken by the Curiosity rover at a site named Mojave. (NASA/JPL-Caltech/MSSS.)

 

However, recent research suggests there is not enough trapped carbon dioxide to provide a substantial atmosphere on Mars. In an article published in Nature Astronomy, Bruce Jakosky from the University of Colorado and Christopher Edwards at Northern Arizona University estimate that melting the ice caps would offer a maximum of a 15 millibars atmosphere.

The carbon dioxide trapped in the Martian rocks would require temperatures exceeding 300°C to be liberated, a value too high for Mars even at Venus’s orbit. 15 millibars doubles the pressure of the current atmosphere on Mars and surpasses the so-called “triple point” of water that should permit liquid water to exist. However, Jakosky and Edwards note that evaporation would be rapid in the dry martian air. Then we hit another problem: Mars is not good at holding onto atmosphere.

Orbiting Mars is NASA’s Mars Atmosphere and Volatile Evolution Mission (MAVEN). Data from MAVEN has revealed that Mars’s atmosphere has been stripped away by the solar wind. It is a problem that would be exacerbated at Venus’s orbit.

“Atmospheric loss would be faster at Venus’s current position as the solar wind dynamic pressure would increase,” said Chuanfei Dong from Princeton University, who had modeled atmospheric loss on Mars and extrasolar planets.

Artist’s rendering of a solar storm hitting Mars and stripping ions from the planet’s upper atmosphere (credit: NASA/GSFC).

This “dynamic pressure” is the combination of the density of particles from the solar wind and their velocity. The velocity does not change greatly between Mars and Venus —explained Dong— but Venus’s closer proximity to the sun boosts the density by almost a factor of 4.5. This would mean that atmosphere on Mars would be lost even more rapidly than at its current position.

“I suspect it would just be a warmer rock,” Colose concluded.

While Mars seems to fare no better at Venus’s location, what if Venus were to be towed outwards to Mars’s current orbit? Situated in the habitable zone, would this Earth-sized planet cool-off to become a second habitable world?

Surprisingly, cooling Venus might not be as simple as reducing the sunlight. Venus has a very high albedo, meaning that the planet reflects roughly 75% of the radiation it receives. The stifling temperatures at the planet surface are due not to a high level of sunlight but to the thickness of the atmosphere. Conditions on the planet may therefore not be immediately affected if Venus orbited in Mars’s cooler location.

“Venus’s atmosphere is in equilibrium,” pointed out Kevin McGouldrick from the University of Colorado and contributing scientist to Japan’s Akatsuki mission to explore Venus’s atmosphere. “Meaning that its current structure does depend on the radiation from the sun. If you change that radiation then the atmosphere will eventually adjust but it’s not likely to be quick.”

 

The surface of Venus captured from the former Soviet Union’s Venera 13 spacecraft, which touched down in March 1982. (NASA)

 

Exactly what would happen to Venus’s 90 bar atmosphere in the long term is not obvious. It may be that the planet would slowly cool to more temperate conditions. Alternatively, the planet’s shiny albedo may decrease as the upper atmosphere cools. This would allow Venus to absorb a larger fraction of the radiation that reached its new orbit and help maintain the stifling surface conditions. To really cool the planet down, Venus may have to be dragged out beyond the habitable zone.

“Past about 1.3 au, carbon dioxide will begin to condense into clouds and also onto the surface as ice,” said Ramses Ramirez from the Earth-Life Sciences Institute (ELSI) in Tokyo, who specializes in modelling the edges of the habitable zone. (An “au” is an astronomical unit, which is the distance from our sun to Earth.)

Once carbon dioxide condenses, it can no longer act as a greenhouse gas and trap heat. Instead, the ice and clouds typically reflect heat away from the surface. This defines the outer edge of the classical habitable zone when the carbon dioxide should have mainly condensed out of the atmosphere at about 1.7 au. The result should be a rapid cooling for Venus. However, this outer limit for the habitable zone was calculated for an Earth-like atmosphere.

The thick atmosphere of Venus captured by the Akatsuki orbiter. (JAXA)

“Venus has other things going on in its atmosphere compared to Earth, such as sulphuric acid clouds,” noted Ramirez. “and it is much drier, so this point (where carbon dioxide condenses) may be different for Venus.”

If Venus was continually dragged outwards, even the planet’s considerable heat supply would become exhausted.

“If you flung Venus out of the solar system as a rogue planet, it would eventually cool-off!” pointed out Max Parks, a research assistant at NASA Goddard.

It seems that simply switching the orbits of the current Venus and Mars would not produce a second habitable world. But what if the two planets formed in opposite locations? Mars is unlikely to have fared any better, but would Venus have avoided forming its lead-melting atmosphere and become a second Earth?

At first glance, this seems very probable. If the Earth was pushed inwards to Venus’s orbit, then water would start to rapidly evaporate. Like carbon dioxide, water vapour is a greenhouse gas and helps trap heat. The planet’s temperature would therefore keep increasing in a runaway cycle until all water had evaporated. This “runaway greenhouse effect” is a possible history for Venus, explaining its horrifying surface conditions. If the planet had instead formed within the habitable zone, this runaway process should be avoided as it had been for the Earth.

“When I suggested this topic, I wondered whether two inhabited planets would exist (the Earth and Venus) if Mars and Venus formed in opposite locations,” Colose said. “Being at Mars’s orbit would avoid the runaway greenhouse and a Venus-sized planet wouldn’t have its atmosphere stripped as easily as Mars.”

 

Artist impression of a terraformed Mars. (NASA GSFC)

 

But discussion within the group revealed that it is very hard to offer any guarantees that a planet will end up habitable. One example of the resultant roulette game is the planet crust. The crust of Venus is a continuous lid and not series of fragmented plates as on Earth. Our plates allow a process known as plate tectonics, whereby nutrients are cycled through the Earth’s surface and mantle to help support life. Yet, it is not clear why the Earth formed this way but Venus did not.

One theory is that the warmer Venusian crust healed breaks rapidly, preventing the formation of separate plates. However, research done by Matt Weller at the University of Texas suggests that the formation of plate tectonics might be predominantly down to luck. Small, random fluctuations might send two otherwise identical planets down different evolutionary paths, with one developing plate tectonics and the other a stagnant lid. If true, even forming the Earth in exactly the same position could result in a tectonic-less planet.

A rotating globe with tectonic plate boundaries indicated as cyan lines (credit: NASA/Goddard Space Flight Center Scientific Visualization Studio).

Venus’s warmer orbit may have shortened the time period in which plate tectonics could develop, but moving the planet to Mars’s orbit offers no guarantees of a nutrient-moving crust.

Yet whether plate tectonics is definitely needed for habitability is also not known. It was pointed out during the discussion that both Mars and Venus show signs of past volcanic activity, which might be enough action to produce a habitable surface under the right conditions.

Of course, moving a planet’s orbit is beyond our technological abilities. There are other techniques that could be tried, such as an idea by Jim Green, the NASA chief scientist and Dong involving artificially shielding Mars’s atmosphere from the solar wind.

“We reached the opposite conclusion to Bruce’s paper,” Dong noted cheerfully. “That is might be possible to use technology to give Mars an atmosphere. But it is fun to hear different voices and this is the reason why science is so interesting!”

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Prepare For Lift-off! BepiColombo Launches For Mercury

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Artist illustration of the BepiColombo orbiters, MIO and Bepi, around Mercury (JAXA).

This Friday (October 19) at 10:45pm local time in French Guinea, a spacecraft is set to launch for Mercury. This is the BepiColombo mission which will begin its seven year journey to our solar system’s innermost planet. Surprisingly, the science goals for investigating this boiling hot world are intimately linked to habitability.

Mercury orbits the sun at an average distance of 35 million miles (57 million km); just 39% of the distance between the sun and the Earth. The planet therefore completes a year in just 88 Earth days.

The close proximity to the sun puts Mercury in a 3:2 tidal lock, meaning the planet rotates three times for every two orbits around the sun. (By contrast, our moon is in a 1:1 tidal lock and rotates once for every orbit around the Earth.) With only a tenuous atmosphere to redistribute heat, this orbit results in extreme temperatures between about -290°F and 800°F (-180°C to 427°C). The overall picture is one of the most inhospitable of worlds, so what do we hope to learn from this barren and baked land?

BepiColombo is a joint mission between the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA). It consists of two orbiters, one built by each space agency. The mission is named after Giuseppe “Bepi” Colombo, an Italian mathematician who calculated the orbit of the first mission to Mercury —NASA’s Mariner 10— such that it could make repeated fly-bys of the planet.

When Mariner 10 reached Mercury in the mid-1970s, it made an astonishing discovery:  the planet had a weak magnetic field. The Earth also has a magnetic field that is driven by movement in its molten iron core.

However, with a mass of only 5.5% that of the Earth, the interior of Mercury was expected to have cooled sufficiently since its formation for the core to have solidified and jammed the breaks on magnetic field generation. This is thought to have happened to Mars, which is significantly larger than Mercury with a mass around 10% that of the Earth. So how does Mercury hold onto its field?

The discoveries only got stranger with the arrival of NASA’s MESSENGER mission in 2011. MESSENGER discovery that Mercury’s magnetic field was off-set, with the center shifted northwards by a distance equal to 20% of the planet’s radius.

The mysteries also do not end with Mercury’s wonky magnetic field. The planet’s density is very high, suggesting a much larger iron core relative to its volume compared to the Earth.

The thin atmosphere is mysteriously rich in sodium and there also appears to be more volatiles such as water ice than is expected for a planet that dances so close to the sun. All this points to a formation and evolution that we do not yet understand.

Artist impression of the JAXA orbiter, MIO, around Mercury (credit: JAXA).

The two BepiColombo orbiters will sweep around the planet to pick at these questions. The pair will get a global view of Mercury, in contrast to MESSENGER whose orbit did not allow a good view over the southern hemisphere.

“Getting data from the southern hemisphere to complement the details from MESSENGER is a logical next step to investigating the nature of Mercury’s magnetic field,” commented Masaki Fujimoto, Deputy Director General at JAXA’s Institute of Space and Astronautical Sciences (ISAS).

The European orbiter is the “Mercury Planetary Orbiter” (MPO), with “Bepi” as a nickname. Bepi will take a relatively close orbit around Mercury, with an altitude between 300 – 930 miles (480 – 1500 km). The main focus of the probe is the planet’s surface topology and composition, as well as a precise measurement of the gravitational field that reveals information about Mercury’s internal structure.

The Japanese orbiter is the “Mercury Magnetospheric Orbiter” (MMO) and was given the nickname “MIO” through a public contest held earlier this year and translates to “waterway” in Japanese.

Masaki Fujimoto, Deputy Director of ISAS, JAXA.

“Water related names received many votes,” explained Go Murakami, BepiColombo MIO project scientist. “Because in the Japanese language, Mercury is written ‘水星’ (suisei) meaning ‘water planet’.”

The focus for MIO is Mercury’s magnetic field and the interaction with the solar wind; a stream of high energy particles that comes from the sun. This requires exploration of the region around Mercury and MIO will take a correspondingly wider orbit than Bepi, with an altitude between 250 – 7500 miles (400 – 12,000km).

While Mercury itself is interesting, understanding the planet’s history has wide ranging implications for the search for habitable worlds around other stars.

The easiest exoplanets to spot are those on close orbits around dim red dwarf (also known as M-dwarf) stars. As they are far less luminous than our sun, even planets on close orbits around red dwarfs may receive a similar level of radiation to the Earth, placing them in the so-called “habitable zone.” An important example of this are the TRAPPIST-1 worlds, whose three habitable-zone planets have orbits lasting 6, 9 and 12 Earth days.

Go Murakami, BepiColombo MIO project scientist

However, the close proximity to the star comes with risks. Red dwarfs are particularly rambunctious, emitting flares that can strip the atmosphere of an orbiting planet. Mars is a classic example of this process.

Even orbiting a relatively quiet star at a distance further from the Earth, the thin atmosphere of Mars is being pulled away by the solar wind. Unless the TRAPPIST-1 worlds and those like them can protect their gases with a magnetic field, their surfaces may always be sterile.

While we know the Earth avoids this fate with its own magnetic field, it is not clear whether it would fare as well closer to the sun or with a weaker magnetic field. Mercury with its weak field and in the full blast of the solar wind offers an extreme comparison point.

A second insight Mercury could provide is that of the origin of rock. Planetary formation theories suggest there must have been mixing of dust grains in the planet-forming disc that circled the young sun. This would have shuffled up the elements that were condensing into solids at different temperatures within the disc. The exact nature and result of the shuffling remains a big question, yet it controls the composition of inner rocky planets that includes the Earth.

“The subject of planetary origins is very intriguing to me,” remarks Fujimoto. “JAXA’s asteroid sample return mission, Hayabusa2, is asking the question of where the water on Earth came from. BepiColombo will ask the complimentary question of how our planet’s rocky body was made.”

Together, the two orbiters cover a wide range of science of addressing these questions. They can also work as a pair by taking simultaneous measurements from different locations. This is particularly useful for analyzing time-varying events and also allows the planetary magnetic field to be separated out from the magnetic field carried by the solar wind.

The launch date for BepiColombo has been pushed back several times over the last few years. However, this has allowed for engineering improvements, and discoveries such as the TRAPPIST-1 planets have only added to the excitement of the mission.

“We are not unhappy about the launch delays,” said Fujimoto. “What has happened in planetary science during that period has made the expectation for BepiColombo even higher!”

The journey to the innermost planet is not a quick one. Due to arrive in 2025, the long duration is actually not due to distance but the need to brake. The pull from the sun’s gravity at such close proximity makes it hard for BepiColombo to slow sufficiently for the two probes to enter Mercury’s orbit.

The spacecraft therefore does nine planetary fly-bys; one by the Earth in April next year, then two for Venus and six for Mercury. The gravity of the planet can be used to slow down the spacecraft and allow Bepi and MIO to begin their main mission.

To my complete delight, ESA have started an animated series of shorts for the mission, similar to the cartoons for the Rosetta mission to comet 67P in 2014. These informative little videos depict the adventures of Bepi, MIO and the Mercury Transfer Module (MTM) that provides the propulsion to reach Mercury.

In addition to the videos, all three probes (and the mission itself) have twitter accounts @BepiColombo (main mission account), @esa_bepi (character account for Bepi which tweets in English), @jaxa_mmo (character account for MIO that tweets in English and Japanese) and @esa_mtm that tweets in… I’ll let you find that out!

The live launch feed from ESA is due to begin at 21:38 EDT on Friday, October 19. Good luck, BepiColombo!

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Asteroid Remains Around Dead Stars Reveal the Likely Fate of Our Solar System

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Artist concept of an asteroid breaking up. (NASA/JPL-Caltech)

(This column was written by my colleague Elizabeth Tasker, now at the Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Sciences (ISAS).  Trained as an astrophysicist, she researches planet and galaxy formation and also writes on space science topics.  Her book, “The Planet Factory,” came out last year.)

June 30th has been designated “Asteroid Day” to promote awareness of these small members of our solar system. But while asteroids are often discussed in the context of the risk they might pose to the Earth, their chewed up remains around other stars may also reveal the fate of our solar system.

It is 6.5 billion years into our future. The sun has fused hydrogen into a core of heavier helium. Compressed by its own gravity, the helium core releases heat and the sun begins to swell. It is the end of our star’s life, but what will happen to the solar system?

While very massive stars end their element-fusing days in a colossal explosion known as a supernovae, the majority of stars in our galaxy will take a less dramatic exit.

Our sun’s helium core will fuse to form carbon but there is not enough mass to achieve the crushing compression needed for the creation of heavier elements. Instead, the outer layers of the dying star will be blown away to leave a dense remnant with half the mass of our current sun, but squeezed down to the size of the Earth. This is a white dwarf; the most common of all stellar ends.

 

The life cycle of our sun

The white dwarf rapidly cools to become a dim twinkle in the sky. Within a few million years, our white dwarf will be less luminous that the sun today. Within 100 million years, it will be dimmer by a factor of 100. But examination of white dwarfs in our galaxy reveals this gentle dimming of the lights is not as peaceful as first appears.

The remnants of stars too light to fuse carbon, white dwarfs have atmospheres that should be thin shells of residue hydrogen and helium. Instead, observations have detected 20 different heavy elements in this envelope of gases that include rock-forming elements such as silicon and iron and volatiles such as carbon and nitrogen.

Infrared observations of over forty white dwarfs have additionally revealed compact dusty discs circling the dead stars. Sitting within the radius of a regular star, these could not have formed before the star shrank into a white dwarf. These must be the remains of what occurred as the star morphed from a regular fusion burner into a white dwarf.

This grizzly tale begins with the star’s expansion. Inflated by the heat from the helium core, our sun will increase to 230 times its current size. The outer layers will cool to emit a red hue that earns this bloated dying star the name “red giant”.

The outer layers of our red giant will sweep outwards and engulf Mercury and Venus, possibly stopping just short of the Earth’s position. But for any life remaining on our planet’s surface, the difference between envelopment and near-envelopment is rather moot.

The sun’s luminosity will peak at about 4000 times its current value, roasting Mars and triggering a whole new set of chemical reactions in Jupiter’s huge atmosphere. As the outer layers blow away and the red giant shrinks in mass, the surviving planets will drift outwards onto longer orbits, circling the white dwarf remnant at around twice their current distance from the sun.

The asteroids in our solar system discovered between 1980 – 2015. (Scott Manley)

But if the surviving planets are pushed outwards and the innermost worlds engulfed and vaporized, what is the origin of the compact disc and rocky pollutants? The answer, explains Dimitri Veras, explains Dimitri Veras, a planetary scientist at the University of Warwick in the UK, is asteroids.

Sitting between Mars and Jupiter, the asteroid belt is a band of rocky rubble left over from the planet formation process.

Occasionally, a kick from Jupiter’s gravity can send these space rocks skittering towards the Earth. These become known as “Near-Earth Objects” (NEOs) and are studied both for the potential threat to our planet should they collide, and also for their scientific value as time capsules from the earliest stages of planet formation.

At the moment, two missions are en-route to bring a sample from two different asteroids back to Earth. Japan’s Hayabusa2 mission has just arrived at asteroid Ryugu, returning stunning images of the asteroid to Earth. The NASA OSIRIS-REx mission is traveling to asteroid Bennu, and will arrive later this year.

 

Asteroid Ryugu images by the ONC-T camera onboard Hayabusa2 between June 18 – 20, 2018.  (JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu and AIST)

 

But sitting further out than Mars, should not the majority of these small celestial bodies be unaffected by the sun’s demise? The problem turns out to be radiation.

Walk outside on a sunny afternoon and you are likely to notice that the ground beneath your feet is hottest at around 2pm in the afternoon, several hours after the sun has moved from directly overhead. This is because it takes time for the pavement to warm and re-emit the solar radiation as heat.

During that time, the Earth has rotated so that this heat radiation is released in a different direction to the absorbed radiation. Like catching a ball and throwing it away at an angle, this difference in direction gives the planet a small kick.

This kick is too small to make a difference to the Earth, but it can have a much more significant result on the evolution of an asteroid. The result is known as the YORP effect (standing for the Yarkovsky-O’Keefe-Radviesvki-Paddock effect, after the mouthful of researchers who developed the theory) and the related phenomenon named after the same first researcher, the Yarkovsky effect. Stemming from the push due to the uneven absorption and emission of radiation, the YORP effect causes a turning torque on asymmetric bodies while the Yarkovsky effect results in a push.

 

The Yarkovsky Effect describes how outgoing infrared radiation on an asteroid can speed up or slow down its motion, and in time change its orbit.  (A. Angelich, NRAO/AUI/NSF)

 

As radiation absorption and emission depends on the individual asteroid’s composition and topology, these forces are immensely hard to predict. This point was driven home in February 2013, when the world was primed for the close approach of asteroid Duende.

While everyone watched the sky in one direction, a second asteroid shot towards the Earth and exploded above Russia. This was the Chelyabinsk meteorite whose collisional path had not been anticipated. Studying the changes in an asteroid’s path due to radiation is therefore one of the primary goals of the OSIRIS-REx mission.

Given these challenges at the sun’s current level of radiation, it perhaps is not surprising that the red giant phase has more violent consequences.

Too small for gravity to pull them into a sphere, asteroids are typically lumpy rocks resembling potatoes or dumplings, like the rocky destination of Hayabusa2 and its predecessor which visited asteroid Itokawa. This asymmetry causes differences in the radiative force across the asteroid and creates a torque. This is the YORP effect and it spins the asteroid. As these small bodies typically have a weak tensile strength, the asteroid can self-destruct by spinning itself to pieces.

This effect is seen in our solar system as there is a sharp cut-off in the population for asteroids around 250m in size with rotation periods shorter than 2.33 hours.

As the radiation from our swollen red giant beats down on the asteroid belt, these space rocks will start to spin and fission. The pieces will form a disc of dust around the dying star as it becomes a white dwarf, slowly accreting onto the dead remnant to pollute its atmosphere .

So is this now the end of our tale? A white dwarf surrounded by the fissioned remains of the asteroid belt, orbited by our more distant planets on wide orbits? It could be, depending on the existence of Planet 9.

Proposed by Mike Brown and Konstantin Batygin at the California Institute of Technology, Planet 9 is a possible addition to our solar system that sits on a very distant orbit beyond Neptune. Its presence is suggested by the alignment of six small objects in the Kuiper belt, a second outer band of rocky rubble that includes the dwarf planet, Pluto.

How Planet 9 might have formed remains a subject of debate. A likely scenario is that the planet formed in the neighborhood of the gas giants, but was thrown outwards in a game of gravitational pinball during a chaotic period as our planet-forming disc was evaporating. If this is true, the planet may be able to enact a terrible revenge.

 

The six most distant objects in the solar system with orbits exclusively beyond Neptune (magenta) all line up in a single direction, indicating the presence of an outside force from an unseen Planet 9. (Caltech/R. Hurt; IPAC)

Running a set of 300 simulations, Veras discovered that the fate of Planet 9 will depend on the planet mass, the distance of its current orbit and how rapidly the sun loses its mass. In the most benign outcome, Planet 9 meets the same fate as the gas giants and drifts outwards onto an even longer orbit. However, there are two situations in which this expansion causes the orbit of Planet 9 to bend.

If a star loses mass gradually, then the orbiting planets will gently spiral outwards and keep their nearly circular paths. But if the stellar mass loss is more rapid, then very distant planets that are more loosely held by the star’s gravity may undergo a runaway expansion of their orbits. As the planet shoots away, its orbit can become bent into an ellipse.

Dimitri Veras is an astrophysicist who researches the contents of planetary systems, including our own, at the University of Warwick, United Kingdom.

Such distant worlds also risk becoming susceptible to the gravitational tug of the surrounding stars in the galaxy. Known as the “galactic tide”, this force is much too weak to affect the planets in their current positions. Yet if Planet 9 drifts too far outwards, then the tidal forces could become strong enough to bend the planet’s orbit.

On an elliptical path, Planet 9 could move from its distant location to swing into the neighborhood of the gas giants. If the planet is massive enough, this could result in either Uranus or Neptune being ejected from the solar system to become rogue worlds: a fitting, final revenge for Planet 9.

Veras’s calculations suggest the most risky discovery for internal harmony would be a Jupiter-sized Planet 9 on an orbit beyond 300 AU, or 300 times the current distance between the Earth and the sun. For comparison, Neptune sits at 30 AU and the dwarf planet Sedna is three times as far, at about 86 AU. Alternatively, a smaller super-Earth Planet 9 could pose a risk if it was further out than 3000 AU.

Observing the gory remains of this process in other star systems provides us with more than just an eerie snapshot of our future. The crushed up asteroids in the atmosphere of white dwarfs reveal the composition of that planetary system.

“There’s no other way of performing an exoplanet autopsy,” explains Veras.

The results can reveal whether the asteroids and planets that orbited the star have a similar composition to our own or something more exotic. So-called “carbon worlds” have been proposed to orbit stars more carbon-rich than our own, whose rocky base may contain graphite and diamond rather than silicates.

So far, the planet autopsy has shown Earth-like remnants, but this is one area in which we would love to see more dead remains.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Know Thy Star, Know Thy Planet: How Gaia is Helping Nail Down Planet Sizes

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Gaia’s all-sky view of our Milky Way and neighboring galaxies. (ESA/Gaia/DPAC)

 

 

(This column was written by my colleague Elizabeth Tasker, now at the Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Sciences (ISAS).  Trained as an astrophysicist, she researches planet and galaxy formation and also writes on space science topics.  Her book, “The Planet Factory,” came out last year.)

 

Last month, the European Space Agency’s Gaia mission released the most accurate catalogue to date of positions and motions for a staggering 1.3 billion stars.

Let’s do a few comparisons so we can be suitably amazed. The total number of stars you can see without a telescope is less than 10,000. This includes visible stars in both the northern and southern hemispheres, so looking up on a very dark night will allow you to count only about half this number.

The data just released from Gaia is accurate to 0.04 milli-arcseconds. This is a measurement of the angle on the sky, and corresponds to the width of a human hair at a distance of over 300 miles (500 km.) These results are from 22 months of observations and Gaia will ultimately whittle down the stellar positions to within 0.025 milli-arcseconds, the width of a human hair at nearly 680 miles (1000 km.)

OK, so we are now impressed. But why is knowing the precise location of stars exciting to planet hunters?

The reason is that when we claim to measure the radius or mass of a planet, we are almost always measuring the relative size compared to the star. This is true for all planets discovered via the radial velocity and transit techniques — the most common exoplanet detection methods that account for over 95% of planet discoveries.

It means that if we underestimate the star size, our true planet size may balloon from being a close match to the Earth to a giant the size of Jupiter. If this is true for many observed planets, then all our formation and evolution theories will be a mess.

The size of a star is estimated from its brightness. Brightness depends on distance, as a small, close star can appear as bright as a distant giant. Errors in the precise location of stars therefore make a big mess of exoplanet data.


An artist’s impression of the Gaia spacecraft — which is on a mission to chart a three-dimensional map of our Milky Way. In the process it will expand our understanding of the composition, formation and evolution of the galaxy. (ESA/D. Ducros)

This issue has been playing on the minds of exoplanet hunters.

In 2014, a journal paper authored by Fabienne Bastien from Vanderbilt University suggested that nearly half of the brightest stars observed by the Kepler Space Telescope are not regular stars like our sun, but actually are distant and much larger sub-giant stars. Such an error would mean planets around these stars are 20 – 30% larger than estimated, a particularly hard punch for the exoplanet community as planets around bright stars are prime targets for follow-up studies.

Previous improvements in the accuracy of the measured radii and other properties of stars have already proved their worth. In 2017, a journal paper led by Benjamin Fulton at the University of Hawaii revealed the presence of a gap in the distribution of sizes of super Earths orbiting close to their star. Planets 20% and 140% larger than the Earth appeared to be common, but there was a notable dearth of planets around twice the size of our own.

Super Earth planets with orbits of less than 100 days seem to come in two different sizes. (NASA/Ames/Caltech/University of Hawaii. (B.J.Fulton))

The most popular theory for this gap is that the peaks belong to planets with similar core sizes, but the planets with larger radii have deep atmospheres of hydrogen and helium. This would make the planets belonging to the smaller radii peak true rocky worlds, whereas the second peak would be mini Neptunes: the first evidence of a size distinction between these two regimes.

This split in the small planet population was spotted due to improved measurements of planet radii based on higher precision stellar observations made using the Keck Observatory. With a gap size of only half an Earth-radius, it had previously gone unnoticed due to the uncertainty in planet size measurements.

Both the concern of a significant error in planet sizes and the tantalizing glimpse at the insights that could be achieved with more accurate data is why Gaia is so exciting.

Launched on December 19, 2013, Gaia is a European Space Agency (ESA) space telescope for astrometry; the measurement of the position and motion of stars. The mission has the modest goal of creating a three-dimensional map of our galaxy to unprecedented precision.

Gaia measures the position of stars using a technique known as parallax, which involves looking at an object from different perspectives.

Parallax is easily demonstrated by holding up your finger and looking at it with one eye open and the other closed. Switch eyes, and you will see your finger moves in relation to the background. This movement is because you have viewed your finger from two different locations: the position of your left eye and that of your right.

Parallax is the apparent shift in the position of stars as the Earth orbits the sun. It can be used to determine distances between stars. (ESA/ATG medialab)

The degree of motion depends on the separation between your eyes and the distance to your finger: if you move your finger further from your eyes, its parallax motion will be less. By measuring the separation of your viewing locations and the amount of movement you see, the distance to an object can therefore be calculated.

Since stars are far more distant than a raised finger, we need widely separated viewing locations to detect the parallax. This can be done by observing the sky when the Earth is on opposite sides of its orbit. By measuring how far stars seem to move over a six month interval, we can calculate their distance and precisely estimate their size.

This measurement was first achieved by Friedrich Wilhelm Bessel in 1838, who calculated the distance to the star 61 Cygni. Bessel estimated the star was 10.3 light years from the Earth, just 10% lower than modern measurements which place the star at a distance of 11.4 light years.

However, measuring parallax from Earth can be challenging even with powerful telescopes. The first issue is that our atmosphere distorts light, making it difficult to measure tiny shifts in the position of more distant stars. The second problem is that the measured motion is always relative to other background stars. These more distant stars will also have a parallax motion, albeit smaller than stars closer to Earth.

As a result, the motion measured and hence the distance to a star, will depend on the parallax of the more distant stars in the same field of view. This background parallax varies over the sky, leaving no way on Earth of creating a consistent catalogue of stellar positions.

The Gaia spacecraft’s billion-pixel camera maps stars and other objects in the Milky Way. (C. Carreau/ESA)

These two conundrums are where Gaia has the advantage. Orbiting in space, Gaia simply avoids atmospheric distortion. The second issue of the background stars is tackled by a clever instrument design.

Gaia has two telescopes that point 106.4 degrees apart but project their images onto the same detector. This allows Gaia to see stars from different parts of the sky simultaneously. The telescopes slowly rotate so that each field of view is seen once by each telescope and overlaid with a field 106.4 degrees either clockwise or counter-clockwise to its position. The parallax motion of stars during Gaia’s orbit can therefore be compared both with stars in the same field of view, and with stars in two different directions.

Gaia repeats this across the sky, linking the fields of view together to globally compare stellar positions. This removes the problem of a parallax measurement depending on the motion of stars that just happen to be in the background.

The result is the relative position of all stars with respect to one another, but a reference point is needed to turn this into true distances. For this, Gaia compares the parallax motion to distant quasars.

Quasars are black holes that populate the center of galaxies and are surrounded by immensely luminous discs of gas. Being outside our Milky Way, the distance to quasars is so great that their parallax during the Earth’s orbit is negligibly small. Quasars are too rare to be within the field of view of most stars, but with stellar positions calibrated across the whole sky, Gaia can use any visible quasars to give the absolute distances to the stars.

What did these precisely measured stellar motions do to the properties of the orbiting planets? Did our small worlds vanish or the intriguing division in the sizes of super Earths disappear?

This was bravely investigated in a journal paper this month led by Travis Berger from the University of Hawaii. By matching the stars observed by Kepler to those in the Gaia catalogue, Berger confirmed that the majority of bright stars were indeed sun-like and not the suspected sub-giant population. However, the more precise stellar sizes were slightly larger on average, causing a small shift in the observed small planet radii towards bigger planets.

Planet radii derived from the new Gaia data and the Kepler (DR25) Stellar Properties Catalogue. Red points are confirmed planets while black points are planet candidates. Bottom panel shows the ratio between the two data sets. There is a small shift towards larger planets in the new Gaia data. (Figure 6 in Berger et al, 2018.)

The same result was found in a parallel study led by Fulton, who found a 0.4% increase in planet radii from Gaia compared with the (higher precision than Kepler, but less precision than Gaia) results using Keck.

The papers authored by Berger and Fulton investigated the split in super Earth sizes on short orbits, confirming that the two planet populations was still evident with the high precision Gaia data. Further exploration also revealed interesting new trends.

Fulton noticed that two peaks in the super Earth population appear at slightly larger radii for planets orbiting more massive stars. This is true irrespective of the level radiation the planets are receiving from the star, ruling out the possibility that more massive stars are simply better at evaporating away atmospheres on bigger planets. Instead, this trend implies that bigger stars build bigger planets.

Models proposed by Sheng Jin (Chinese Academy of Sciences) and Christoph Mordasini (the Max Planck Institute for Astronomy) in a paper last year proposed that the location of the split in the super Earth population could be linked to composition.

Planets made of lighter materials such as ices would need a larger size to retain their atmospheres, compared to planet cores of denser rock. If the planet size at the population split marks the transition from large rocky worlds without thick atmospheres to mini-Neptunes enveloped in gas, then it corresponds to the size needed to retain that gas.

Berger suggests that the gap between the planet populations seen in the new Gaia data is best explained by planets with an icy-rich composition. As these planets all have short orbits, this suggests these close-in worlds migrated inwards from a much colder region of the planetary system.

The high precision planet radii measurements from Gaia seem to leave our planet population intact, but suggest new trends worth exploring. This will be a great job for TESS, NASA’s recently launched planet hunter that is preparing to begin its first science run this summer. Gaia’s astrometry catalogue of stars will be ensuring we get the very best from this data.

Facebooktwittergoogle_plusredditpinterestlinkedinmail