NASA’s Planet-Hunter TESS Has Just Been Launched to Check Out the Near Exoplanet Neighborhood

Facebooktwittergoogle_plusredditpinterestlinkedinmail

This column was written by my colleague Elizabeth Tasker, now at the Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Sciences (ISAS).  Trained as an astrophysicist, she researches planet and galaxy formation and also writes on space science topics.  Her book, “The Planet Factory,” came out last year.

The TESS exoplanet hunter telescope launched today on a SpaceX Falcon 9 rocket at the Cape Canaveral Air Force Station in Cape Canaveral, Fla. The space telescope will survey almost the entire sky, staring at the brightest and closest stars in an effort to find any planets that might be orbiting them. (AP Photo/John Raoux)

On January 5, 2010, NASA issued  landmark press release : the Kepler Space Telescope had discovered its first five new extra-solar planets.

The previous twenty years had seen the discovery of just over 400 planets beyond the solar system. The majority of these new worlds were Jupiter-mass gas giants, many bunched up against their star on orbits far shorter than that of Mercury. We had learnt that our planetary system was not alone in the Galaxy, but small rocky worlds on temperate orbits might still have been rare.

Based on just six weeks of data, these first discoveries from Kepler were also hot Jupiters; the easiest planets to find due to their large size and swiftly repeating signature as they zipped around the star. But expectations were high that this would be just the beginning.

“We expected Jupiter-size planets in short orbits to be the first planets Kepler could detect,” said Jon Morse, director of the Astrophysics Division at NASA Headquarters at the time the discovery was announced. “It’s only a matter of time before more Kepler observations lead to smaller planets with longer period orbits, coming closer and closer to the discovery of the first Earth analog.”

Morse’s prediction was to prove absolutely right. Now at the end of its life, the Kepler Space Telescope has found 2,343 confirmed planets, 30 of which are smaller than twice the size of the Earth and in the so-called “Habitable Zone”, meaning they receive similar levels of insolation –the amount of solar radiation reaching a given area–to our own planet.

Yet, the question remains: were any of these indeed Earth analogs?

In just a few decades, thanks to Kepler, the Hubble Space Telescope and scores of astronomers at ground-based observatories, we have gone from suspecting the presence of exoplanets to knowing there are more exoplanets than stars in our galaxy. (NASA/Ames Research Station; Jessie Dotson and Wendy Stenzel)

It was a question that Kepler was not equipped to answer. Kepler identifies the presence of a planet by looking for the periodic dip in starlight as a planet passes across the star’s surface. This “transit technique” reveals the planet’s radius and its distance from the star, which provides an estimate of the insolation level but nothing about the planet surface conditions.

To distinguish between surfaces like those of Earth or Venus, a new generation of space telescopes is required.

These are the tasks before NASA’s long-awaited flagship James Webb Space Telescope (JWST) and  WFIRST  (if ultimately funded,)  Europe’s ARIEL mission and potentially what would be the 2030s flagship space telescope LUVOIR, if it is selected by NASA over three competitors. These telescopes will be able to probe exoplanet atmospheres and will have the capacity to measure the faint reflected light of the planets to study, via spectroscopy, their composition, geology and possibly biology.

But there is one big problem. While Kepler has found thousands of exoplanets, very few are suitable targets for these studies.

At the time of Kepler’s launch, we had no idea whether planet formation was common or anything about the distribution of planet sizes. Kepler therefore performed a planet census. By staring continuously at a small patch of the sky, Kepler waited out the time needed to see planets whose orbits took days, months and then years to complete.

From this, we discovered that planet formation takes place around the majority of stars, small planets are common and planets frequently get shoveled inwards onto short orbits close to the star. The cost of focusing on a small patch of sky is that many of the planets Kepler discovered were very distant. This is like staring into a forest; if you try to count 100 trees by looking in just one direction, many will be deep in the wood and far away from you.

Looping animated gif of the unique orbit TESS will fly. At 13.7 days, it is exactly half of the moon’s orbit, which lets the moon stabilize it. During the part of the orbit marked with blue, TESS will observe the sky, collecting science data. During the orange part, when TESS is closest to Earth, it will transmit that data to the ground. (NASA’s Goddard Space Flight Center)”

These distant planets are great for number counting, but they are too far away for their atmosphere or reflected light to be detected. In such cases, even enticing properties such as an orbit within the habitable zone have little meaning as follow-up studies that could probe signs of life are not possible.

Yet the census result that short-period planets were common allows for an entirely new type of mission. A survey to focus only on the bright, close stars whose planets would be near enough to detect their atmospheres with instruments such as the JWST. Prior to Kepler, we did not know such a telescope would find any planets. Now, we can be certain.

And that is why TESS was launched on Wednesday.

Standing for the Transiting Exoplanet Survey Satellite, TESS is a NASA mission to look for planets around bright stars less than 300 light years from Earth. All told, TESS will look at 200,000 stars spread over 85% of the sky in two years. For comparison, the field of view for Kepler had a sky coverage of just 0.25% and looked as deep as 3,000 light years into space.

Such a wide sweep means TESS cannot spend long staring at any one position. TESS will observe most of the sky for about 27 days, which is ample for detecting planets on ten day orbits, the most common orbital period found by Kepler. Over the ecliptic pole (90 degrees from the Sun’s position), TESS will observe somewhere between 27 and 351 days.  This region is where the JWST will be able to study planets throughout the year.

Image showing the planned viewing regions for the Transiting Exoplanet Survey Satellite mission. (Roland Vanderspek, Massachusetts Institute of Technology)

Bright and close by red dwarf stars, and the planets around them, are a prime target for TESS.  These stars are smaller and cooler than our sun, which makes it easier to spot the subtle dip in brightness from smaller planets. The cooler temperatures also mean that planets can orbit much closer to the star without roasting. A ten day orbit is still unlikely to be within the habitable zone, but orbits lasting between 20 – 40 days (which TESS will spot near the ecliptic poles) may receive similar insolation levels to the Earth.

A recent paper submitted to the Astrophysical Journal by Sarah Ballard, an exoplanet astronomer at MIT, estimated that TESS may find as many as 1000 planets orbiting red dwarfs and around 15 of these may be less than twice the size of the Earth and orbit within the habitable zone; ideal candidates for a JWST observation.

Previous predictions for TESS suggested the telescope will find a total (all orbits around all stars) of 500 planets less than twice the size of the Earth and 20,000 exoplanets over the first two years. Ballard’s new numbers for planets around red dwarfs are 1.5 times higher than previous predictions, so these totals look likely to be lower limits.

While future atmospheric studies with JWST are exciting, these observations will still be very challenging. Time on this multi-purpose telescope will also be limited and we have to wait until 2020 for the launch. However, the bright stars targeted by TESS are also perfect for a second type of planet hunting method: the radial velocity technique.

This second-most prolific planet-hunting technique looks for the slight shift in the wavelength of the light as the star wobbles due to the gravitational pull of the planet. As the star moves away from Earth, the light waves stretch and redden. The light shifts towards blue as the star wobbles back our way. The result is a measurement of the planet’s minimum mass. The true mass can be found if the inclination of the orbit is known, which can be measured if the planet is also seen to transit.

With both a transit measurement from TESS and a radial velocity measurement from another ground-based instrument such as HARPS, on Europe’s La Silla Telescope in Chile, the average density of the planet can be calculated.

The transit technique identifies planets by the tiny drop in starlight measured as a planet passes in front of the star.

 

The radial velocity technique identifies planets via the shift in the wavelength of the light of a star as it wobbles due to the presence of a planet.

The planet density can reveal whether a world is gaseous or rocky or heavy in volatiles such as water. This is a particularly interesting question for the “super Earths” that are one of the most common class of planet found by Kepler, but for which we have no solar system analog. While an average density can only be a crude estimate of the planet interior, it can potentially be measured for a large number of the planets found by TESS and is an extremely useful guide for narrowing down planet formation theories.

But before TESS can find these planets, it first has to get into a rather unusual orbit. From launch on the SpaceX Falcon 9, TESS will boost its orbit using solid rocket motors (ignitable cylinders of solid propellent) until it is able to get a kick from the Moon’s gravity. The need for the lunar push was why the launch window for TESS was a very brief 30 seconds.

After the lunar shove, TESS will enter a highly elliptical orbit around the Earth, circling our planet every 13.7 days. This means TESS will orbit the Earth twice in the time it takes the Moon to orbit once: a situation known as a 2:1 resonance.

Planets that orbit in very close packed systems are often seen to be in similar resonant orbits. For examples, the TRAPPIST-1  worlds are in resonance and within our own solar system, the Jovian moons of Io, Europa and Ganymede orbit Jupiter in a 4:2:1 resonance.

This common occurrence is because resonant orbits are very stable, due to the pull from the gravity of the neighboring planets or moons exactly cancelling out. It is exactly for this reason that such an orbit has been chosen for TESS. With the gravitational tugs from the Moon cancelling out over an orbit, TESS’s path around the Earth will remain stable for decades. This potentially allows the mission to continue far beyond its designated two year lifespan.

TESS will take about 60 days to reach its final orbit and power-on, initialize and test its instruments. Science operations are expected to begin properly 68 days after launch. The first full data release from TESS is planned for next January, but with science operations starting in the summer we may hear the first results from TESS in the second half of this year.

Unlike with Kepler, this will be the data that will let us get to know our neighborhood.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Just-Approved European ARIEL Mission Will Be First Dedicated to Probing Exoplanet Atmospheres

Facebooktwittergoogle_plusredditpinterestlinkedinmail

 

This column was written by my colleague Elizabeth Tasker, now at the Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Sciences (ISAS).  Trained as an astrophysicist, she researches planet and galaxy formation and also writes on space science topics.  Her book, “The Planet Factory,” came out last year.

 

The Ariel space telescope will explore the atmospheres of exoplanets. (Artist impression, ESA)

The European Space Agency (ESA) has approved the ARIEL space mission—the world’s first dedicated exoplanet atmosphere sniffer— to fly in 2028.

ARIEL stands for the “Atmospheric Remote-sensing Infrared Exoplanet Large-Survey mission.” It is a space telescope that can detect which atoms and molecules are present in the atmosphere of an exoplanet.

The mission was selected as a medium class mission in the ESA Cosmic Vision program; the agency’s decadal plan for space missions that spans 2015 – 2025.

One of the central themes for Cosmic Vision is uncovering the conditions for planet formation and the origins of life. This has resulted in three dedicated exoplanet missions within the same decadal plan. ARIEL will join CHEOPS (in the small class mission category) and PLATO (another medium class mission) in studying worlds beyond our own sun.

Yet ARIEL is a different type of telescope from the other exoplanet-focused missions. To understand why, we need to examine what properties we can observe of these distance exo-worlds.

Exoplanet missions can be broadly divided into two types. The first type are the exoplanet hunter missions that search the skies for new worlds.

These are spacecraft and instruments such as the NASA Kepler Space Telescope. Since it launched in 2009, Kepler has been an incredibly prolific planet hunter. The telescope has found thousands of planets, modeled their orbits and told us about the distribution of their sizes.

From Kepler, we have learnt that planet formation is common, that it can occur around stars far different from our own sun, and that these worlds can have a vast range of sizes and myriad of orbits quite unlike our own Solar System.

 

Current and future (or proposed) space missions with capacities to identify and characterize exoplanets. (NASA,ESA: T. Wynne/JPL, composited by Barbara Aulicino)

 

However, the information Kepler is able to provide about individual planets is very limited. The telescope monitors stars for the tiny drop in light as the planet crosses (or “transits”) the star’s surface. From this, astronomers can measure the radius of the planet and its orbital period but nothing about the planet’s surface conditions.

The result is a little like knowing the number of students and distribution of grades in a particular school, but having no idea if the student who sits in the third row actually likes math.

The second medium-class mission in the ESA Cosmic Vision program, PLATO, is also a planet hunter. Like Kepler, PLATO will search stars for the periodic light dip that indicates the presence of a planet.

However, the telescope will explore a much larger region of the sky than Kepler, with an emphasis on detecting rocky planets on Earth-like orbits that receive a similar amount of radiation as our own planet (the so-called habitable zone).

While PLATO will not be able to tell if these planets are actually Earth-like (and not just Earth-sized on similar orbits), it will tell us a lot more about the statistics of solar systems like our own. I’m also going to throw CHEOPS into this category at well.

Technically, CHEOPS is not a planet hunter as the telescope will search for the transit light dip of stars already known to host planets. These worlds have been detected by the wobble of the star due to the presence of the orbiting planet, a method known as the radial velocity or Doppler wobble technique.

This method provides the minimum mass of a planet, but the true mass depends on the angle of the planet’s orbit. If a transit could be detected, then both the radius and the orbit inclination would be known, providing a density for these worlds. Bulk density is a very useful measurement for differentiating between rocky super Earths and gaseous mini Neptunes, providing a huge boost information for planet formation theories.

However, CHEOPS still will not know anything about the composition or surface conditions of these planets.

 

NASA’s Transiting Exoplanet Survey Satellite (TESS) is scheduled to launch next months. (Artist impression, NASA’s Goddard Space Flight Center)

By virtue of its imminent launch in the next month, the NASA TESS mission is one of the most exciting new entries in the planet hunter class. TESS will sweep over the whole sky, a huge coverage that means the telescope must focus on planets orbiting bright stars at a swift click of about 10 days per orbit.

In a two-year survey of the solar neighborhood, TESS will monitor more than 200,000 stars for planetary transits. This first-ever space-borne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances.

If we compare the planet hunter missions to our school analogy, Kepler studied the grades of one school, TESS is checking a single class in multiple schools and PLATO is aiming for a full educational census. CHEOPS is adding in extra scores to greatly extend the useful statistics.

One of the key goals of TESS is to identify good targets for atmospheric follow-up missions —  a topic that brings us finally back to ARIEL.

 

Transmission spectroscopy: Molecules in an exoplanet’s atmosphere absorb different wavelengths of light, causing the atmosphere to go from transparent (left) to opaque (right). The observed planet radius therefore depends on the wavelength being observed. ARIEL can use this to determine atmospheric composition.

 

In contrast to Kepler, PLATO and TESS, ARIEL is not trying to find new planets.Instead, the telescope belongs to the second type of mission which probes conditions on the planet itself.

ARIEL will look at starlight that is passing through the atmosphere of known transiting planets. Molecules in the atmosphere absorb different wavelengths of light, turning the gases surrounding the planet opaque at these wavelengths. This produces a change in the planet’s radius as its atmosphere switches from transparent to opaque.

By measuring this apparent size change for different wavelengths, ARIEL can decipher what gases must be in the planet’s atmosphere.

This technique is known as transmission spectroscopy, where the term spectroscopy  refers to studying light split into its constituent wavelengths or spectrum. These molecules are the products of the planet’s composition, chemistry and —in the case of rocky planets— geological and potentially biological processes. This makes transmission spectroscopy a direct measure of what is going on within the planet.

 

Eclipse spectrometry: As the planet is eclipsed by the star, a secondary dip in luminosity is observed. This corresponds to the planet’s own radiated and reflected light and can also reveal atmospheric details.

 

In addition to exploring the light dip during the planet’s transit, ARIEL will also examine the tiny difference in radiation as the planet ducks behind the star.

We normally consider the planet as a dark object obscuring the star’s light during the transiting part of its orbit. However, the planet also emits radiation both due to its ownheat and reflected starlight. Just before the planet is eclipsed by the star, the observed luminosity peaks due to the combination of the star and fully illuminated planet.

When the planet moves behind the star and disappears from view, there is a sudden drop corresponding to the loss of the planet’s radiation. This fluctuation is more tiny than when the planet transits across the star, but its detection measures the planet’s own radiation.

The magnitude of this dip also depends on wavelength, as the structure and composition of the planet’s atmosphere will determine what wavelengths of radiation are being reflected and emitted.

Looking at the spectrum of this emitted (rather than transmitted) light gives ARIEL a second handle on planet conditions. The planet’s disappearance behind the star is known as the secondary or planetary eclipse giving this technique the name eclipse spectroscopy.

As well as studying the components of light as the planet and star eclipse one another, ARIEL will also monitor the luminosity of the planet during its whole orbit. This allows the telescope to see changes in radiation as different parts of the planet come into view, corresponding to a longitudinal map of planet temperature. Such changes are known as phase variations, referring to the star illuminating the planet at different angles just like phases of the moon.

An example of what can be drawn from this is found in the intriguing case of a planet known as 55 Cancri e. 55 Cancri e is a planet roughly twice the size of the Earth on an orbit so short that the scorching hot world circles its star in just 17 hours. This close proximity to the star makes 55 Cancri e tidally locked; like the moon orbiting the Earth, one side of 55 Cancri e always faces the star, giving a hemisphere of perpetual day and one of never ending night.

 

Super-Earth 55 Cancri e orbits in front of its parent star in this artist’s illustration. (ESA/Hubble, M. Kornmesser)

 

It would be logical to assume that the hottest spot on 55 Cancri e would be the center of the day side, known as the sub-stellar point. This would be visible just before the planet ducked behind the star.

However, a 2016 paper in the journal Nature, led by Brice-Olivier Demory from the University of Cambridge used the NASA Spitzer Space Telescope to map the phase variations of 55 Cancri e. To their surprise, the hot spot was shifted by 41 degrees east of the expected location. This suggested either 55 Cancri e had an atmosphere capable of redistributing the star’s heat or perhaps the baking surface was molten rock that pushed the hottest material along a river of lava.

The result from 55 Cancri e shows that ARIEL will not be the first attempt to study exoplanet atmospheres. However, it will be the first mission entirely dedicated to this task. This comes with serious advantages.

The first forages into exoplanet atmospheric data came from the Hubble and Spitzer Space Telescopes and ground-based observatories. These have been enticing but sparse, with data from only a handful of planets smaller than Neptune.

The upcoming (but, alas, just delayed until 2020) NASA James Webb Space Telescope (JWST) and European Extremely Large Telescope (E-ELT) will also be powerful observatories for exploring exoplanet atmospheres, but these are general purpose facilities whose high demand will give time for just a few tens of possible planetary targets.

To truly explore the composition of exoplanets, we need an order of magnitude more examples of atmospheric data. Without this, we risk building our models of planet formation on a handful of observed compositions that may not be typical, or only occur in particular situations. ARIEL aims to observe around 1000 exoplanet atmospheres, probing the gases enveloping planets from Jupiter to super-Earth in size.

“With the current data sets, we have unsettled questions including why some planets have flatter spectrum (less evidence of light being absorbed by different molecules) and others with distinct absorption features, and the diversity of atmospheric inventories and profiles is not well understood,” explains Yuka Fujii, Associate Professor at the Earth Life Science Institute (ELSI) at the Tokyo Institute of Technology. “The large number of planets Ariel will give us more clues.”

As a mission with a dedicated task, ARIEL is also fine tuned for the job.

The telescope can simultaneously examine a broad range of wavelengths covering all the major expected atmospheric gases such as water, carbon dioxide, methane, ammonia and hydrogen sulfide and cyanide through to the metallic compounds.

Simultaneous measurements are particularly exciting, as stars are rambunctious plasma balls and stellar activity in-between observations may interfere with being able to directly compare different wavelength observations.

While the atmosphere is potentially a good place to hunt out biosignatures, directly spotting biological action is not a target for ARIEL. The planets ARIEL will be studying are hot worlds which orbit close enough to their star to have equilibrium temperatures (the temperature at the top of the atmosphere) above 660°F (350°C).

 

ARIEL will focus on hot planets that orbit close to their star. (Artist impression, ESA/ATG medialab.)

 

The advantage of the high temperature is that the atmosphere should reflect the composition of the planet, whereas a cooler world might have many of its molecules in solid form or in condensed clouds, hidden from ARIEL.

Speaking to the journal Nature, the principal investor for the ARIEL mission, Giovanna Tinetti said that “ARIEL can really give us a full picture of what exoplanets are made of, how they form and how they evolve.”

Probing the main composition for the planet makes the data from ARIEL invaluable to understanding how and where planets formed. This last point is particularly intriguing, since results from our planet hunting telescopes strongly suggest planets do not stay where they are born.

The first discoveries of Jupiter-sized worlds on orbits much shorter than Mercury was highly surprising, since there should not be enough dusty building material so close to the star to create large planets. This advanced the idea of planetary migration, where planets form on one orbit and then move to another.

What is not clear is where these planets formed and when they began their migration. Unpicking the planet composition will help pin down their trajectories, since different elements condense into planet-building material at different distances from the star. A planet rich in water vapor, for example, likely formed far from the star where it was cold enough for ice to freeze.

Mapping the evolution of planetary systems has relevance for more temperate worlds, as the composition of planets on Earth-like orbits will dictate whether they can support processes we use for life, such as a carbon-silicate cycle and magnetic field. As the first dedicated atmospheric explorer, ARIEL will also act as a pathfinder for future missions that may one day be able to sniff the gases around a habitable world.

Whether your interests lie in composition, planet evolution or habitability, ARIEL will be the one to watch.

A wonderful overview of the different exoplanet missions, including ARIEL, Plato and TESS, can be found on David Kipping’s “Cool Worlds” YouTube series.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

To Understand Habitability, We Need to Return to Venus

Facebooktwittergoogle_plusredditpinterestlinkedinmail

This column was written by my colleague, Elizabeth Tasker.  Based in Tokyo, she is a scientist and communicator at the Japanese Space Agency JAXA and the Earth-Life Science Institute (ELSI).  Her book, “The Planet Factory,” was published last fall.


This image shows the night side of Venus in thermal infrared. It is a false-color image using data from the Japanese spacecraft Akatsuki’s IR2 camera in two wavelengths, 1.74 and 2.26 microns. Darker regions denote thicker clouds, but changes in color can also denote differences in cloud particle size or composition from place to place.  JAXA / ISAS / DARTS / Damia Bouic

“You can feel what it’s like on Venus here on Earth,” said Kevin McGouldrick from the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. “Heat a hot plate until it glows red, place your palm on its surface and then run over that hand with a truck.”

The surface of Venus is a hellish place. Suffocated by a thick atmosphere, pressure on the Venusian surface is 92 times greater than on the surface of Earth. Temperatures sit at a staggering 863°F (462°C), which is sufficient to melt lead.

The longest a spacecraft has survived in these conditions is a mere 127 minutes; a record set by the Russian Venera 13 mission over 35 years ago.

As the brightest planet in the night sky, Venus allured ancient astronomers into naming the world after the Roman mythological goddess of love and beauty. This now seems an ironic choice, but the contrast between distant observation and surface conditions produces an apt juxtaposition for exoplanets.

The comparison has led to an article in Nature Geoscience by McGouldrick and a nine author white paper advising on astrobiology strategy for the National Science Foundation. The conclusion of both publications echoes the irony of Venus’s name: we need to return to the inferno of Venus to understand habitable worlds.

 

A portion of western Eistla Regio is displayed in this three-dimensional perspective view of the surface of Venus. Synthetic aperture radar data from the spacecraft Magellan is combined with radar altimetry to develop a three-dimensional map of the surface. Rays cast in a computer intersect the surface to create a three-dimensional perspective view.  The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image, a frame from a video released in 1991, was produced at NASA’s JPL Multimission Image Processing Laboratory.

In the last 25 years, scientists have discovered over 3,500 extrasolar planets. The vast majority of these worlds have not been imaged directly, but are detected by tiny influences on their host star. These observations provide a measurement of the planet’s size and the average energy received from the star, but no details of the conditions at the planet surface. This leaves modern astronomers as blind to exoplanets as the ancient Romans were to the worlds of our solar system.

While we cannot visit the surface of exoplanets, our knowledge may be about to take a major leap forward. New instruments such as NASA’s James Webb Space Telescope (launch date 2019) and ESA’s Ariel mission (launch 2026) are aiming to detect the atmospheres of these distant worlds. The enveloping gases are a product of the planet’s geology, chemistry and biology, producing a direct indication of what is occurring on the surface.

However, this signature is hard to measure for terrestrial worlds with thin atmospheres, requiring a large number of precious observing hours. This means we need to select our telescope targets carefully. An ideal choice would be a planet writhing with geological and biological activity that is imprinting its presence in the atmosphere.

In short, what we want is an exo-Earth. What we don’t want is an exo-Venus.

Surface photographs from the former Soviet Union’s Venera 13 spacecraft, which touched down in March 1982. Ten probes from the Venera series successfully landed on Venus and transmitted data from the surface of the planet between 1961 and 1984. In addition, thirteen Venera probes successfully transmitted data from the atmosphere of Venus.

At first glance, a tantalizingly simple way to distinguish these two planets is the circumstellar habitable zone. Broadly defined, this is the region around a star where the radiation levels are right to support liquid water on a planet’s surface. At the inner edge of the habitable zone, water evaporates and is rapidly lost from the planet in a process known as ‘runaway greenhouse’. At the outer edge, carbon dioxide condenses into clouds and is unable to trap sufficient heat to prevent global freezing.

With a thick atmosphere lacking in water, Venus shows signs of having undergone a runaway greenhouse phenomenon that would seem to support the habitable zone edges. But digging a little deeper reveals more complex story. The habitable zone edges are traditionally calculated via climate models for the Earth. Yet, there is evidence that Venus was never that similar to the home planet we know.

While the Earth’s crust is broken into plates, Venus is thought to have a ‘stagnant lid’; a non-mobile crust that does not cycle material and nutrients up from the planet’s interior. Possibly linked with that —or maybe not— Venus has no magnetic field and would likely have suffered a similar fate to Mars and lost most of its atmosphere if it did not have such a thick reservoir of gases. There are almost certainly other differences; we don’t know because we haven’t been back to the Venusian surface since the 1980s.

What this means is that the path that led Venus to be an unimaginable inferno likely started a long time before a runaway greenhouse could occur.

If the deviation from Earth were initially driven by geodynamics, formation or other non-climate differences (such as the failure to form crustal plates, or poor internal heat circulation preventing a magnetic field) then the boundary between Earth and Venus is likely unrelated to the climate-based habitable zone. Without understanding the history of this second Earth-sized planet in our own system, we have no hope of differentiating between a Venus or Earth around another star.

A topographic map of Venus, with sinusoidal projection, based on data from the Magellan spacecraft, which was one of the few missions launched from the space shuttle.  It left for Venus in 1989 and mapped the planet until 1994.  (NASA)

But is this concern unnecessary? While an exo-Venus would not be an interesting place to hunt for signatures of life, we might learn about the formation of our two worlds by exploring the atmosphere of similar planets around other stars.

And this is where we hit a second problem; we don’t understand the atmosphere of Venus.

Models predict that planets that have undergone a runaway greenhouse should have an oxygen rich atmosphere. This is from evaporated water molecules that are broken apart by the ultraviolet radiation from the Sun, causing the constituent hydrogen atoms to escape the planet’s gravity while the heavier oxygen is left behind.  Venus’s atmosphere isn’t oxygen rich. It’s full of carbon dioxide and clouds of sulphuric acid.

This leaves us trying to understand the distant signature of alien atmospheres without a good comprehension of the examples we have in our own Solar System.

These arguments present a compelling case for Venus. Yet although three out of twelve proposals for NASA’s New Frontiers Program were for Venus missions, none were selected as finalists last December. The same was true for the last call for the Discovery Program; two out of five finalists for this lower cost mission category were for Venus, but neither were selected despite Discovery proposals being typically more focussed on the inner Solar System.

Kevin McGouldrick of the University of Colorado, Boulder, says the primary focus of his research is the nature and evolution of the clouds of Venus. Some 35 to 55 miles above the surface of Venus,  temperatures and pressures resemble those at the surface of the Earth.

Is there a reluctance to go to Venus?

Undoubtedly, planet surface conditions that can melt a spacecraft curbs enthusiasm. The insulation required to protect a probe on the Venusian surface or conduct a short mission will drive costs skyward and may seem a poor return compared to other projects.

Missions to study the Venusian atmosphere would be substantially less risky. The only mission currently operating around Venus is Japan’s Akatsuki orbiter, which last year returned data suggesting mountainous terrain on Venus was sufficient to drive waves through the huge weather system.

In his Nature Geoscience article, McGouldrick proposes that detailed monitoring of Venus’s atmosphere is needed to understand the planet’s history. “To find out why Venus is how it is now, we need to know how it used to be,” he pointed out.

This information could be found in the abundances and isotopes (different variations of the same element) of the noble gases on Venus. These unreactive elements are acquired during planet formation, so changes in their quantities indicate losses in Venus’s past of strippable quantities such as atmosphere and water. Comparison with Earth can also indicate if the two planets formed from similar materials, or if part of the dichotomy between these Earth-sized worlds can be laid at the door of compositional differences.

But another orbiter loses out on basic appeal. NASA planetary exploration typically follows the pattern of fly-by spacecraft, orbiters, landers and rovers and then missions to return samples to Earth. Mars exploration is following this list, with the planned Mars 2020 mission collecting samples for possible later collection. Missions to Europa and Mercury are doing the same, albeit at an earlier stage.

But the hellish surface conditions of Venus make this pattern difficult, and the prospect of repeating the orbiter step with better instruments is significantly less enticing.

The solution might be a combined orbiter and lander mission, with data from the orbiter mitigating the risk associated with the lander. Alternatively, an aeroplane or balloon that travels through the upper parts of the Venusian atmosphere might combine originality with data that cannot be achieved in orbit. Designs like these have been proposed for a Russia-led mission with a contribution from NASA, known as Venera-D, but funding remains uncertain.


This image of the equatorial region of Venus taken by the Japanese Akatsuki probe provides striking detail of the equatorial, tropical, and extra-tropical clouds of the planet. Color changes indicate local variations in the amounts of a little-understood ultraviolet absorber and sulfur dioxide in the atmosphere. JAXA / ISAS / DARTS / Damia Bouic

While a Venus mission did not make into the finalists for the New Frontiers program, funding was given to develop a camera that could measure the mineralogy and composition of Venus’s rocks. This demonstrates a continual interest by mission experts in Venus, but publications by the community suggest this needs to be higher up the priority list.

The bottom line is that visiting our neighbor may present one of the biggest challenges in the Solar System. But exoplanet research may be lost without it.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Artificial Intelligence Has Just Found Two Exoplanets: What Does This Mean For Planet Hunting?

Facebooktwittergoogle_plusredditpinterestlinkedinmail
There are now two known eight-planet solar systems in the galaxy. Artificial intelligence was used to comb through the data collected three years ago by the Kepler Space Telescope and its algorithms helped find Kepler 90-1, the eight planet in that solar system.  (NASA)

By Elizabeth Tasker

The media was abuzz last week with the latest NASA news conference. A neural network — a form of artificial intelligence or machine learning — developed at Google had found two planets in data previously collected by NASA’s prolific Kepler Space Telescope. It’s a technique that could ultimately track-down our most Earth-like planets.

The new exoplanets orbit stars already known to host planetary systems, Kepler-90 and Kepler-80. While both are only slightly larger than the Earth, their two-week orbits makes these worlds too hot to be considered likely candidates for hosting life. Moreover, the systems are thousands of light years away, putting the planets out of range of atmospheric studies that could test their habitability.

With over 3,500 exoplanets already discovered, you might be forgiven for finding these additions underwhelming. However, while other planets in the same system have been known about for several years, these two Earth-sized worlds were previously overlooked. The difference is not a new telescope, but an exploration of the data with a different kind of brain.

The Kepler Space Telescope searches for planets using the transit technique; detecting small dips in amount of starlight as the planet passes in front of the star. As planets are much smaller than stars, picking out this tiny light drop is a tricky task. For a Jupiter-sized planet orbiting a star like our Sun, the decrease in brightness is only about 1%. For an Earth-sized planet, the signal becomes so small it is right on the edge of what Kepler is able to detect. This makes their dim wink extremely difficult to spot in the data.

Kepler Space Telescope collected data on planet transits around distant stars for four years, and the information has provided  — and will continue providing —  a goldmine for planet hunters.  A severe malfunction in 2013 had robbed Kepler of its ability to stay pointed at a target without drifting off course, but the spacecraft was stabilized and readjusted to observe a different set of stars.  (NASA)

The discovery paper published in the Astronomical Journal combined the expertise of Christopher Shallue from Google’s artificial intelligence project, Google Brain, and Andrew Vanderburg, a NASA Sagan Postdoctoral Fellow and astronomer at the University of Texas at Austin. The researchers explored using a neural network to shake ever harder to find worlds out of the Kepler data.

It is a technique that is being used across a wide range of disciplines, but what exactly does a neural network do?

Neural networks are computer algorithms inspired by the way the brain recognizes patterns. For example, as a child you learned to recognize buses. It is unlikely anyone sat you down and presented a set of rules for identifying a bus. Rather, buses were repeatedly pointed out to you on the street and your brain found its own set of similarities within these examples. The idea behind a neural network is similar. Rather than telling a computer how to identify a feature such as the dip in light from a planet, the network is fed many examples and allowed to determine the features to get a consistently correct result.

This is a very successful way of developing pattern recognition software, making neural networks one of the newest tools in town used from image recognition to stock market trends. A key strength is dealing with large quantities of data to produce a consistent result.

Kepler has observed about 200,000 stars and another 200,000 will be the target for the Transiting Exoplanet Survey Satellite (TESS) to be launched next year. And if that analysis still looks doable with a bit of elbow grease, the NASA exoplanet archive has just added 18 million light curves from the UKIRT Microlensing survey.

In addition to being slow, humans can also be inconsistent (I once tried to flag down a lorry instead of a bus before I’d had my morning tea). This is especially true when trying to tease out the faint signature of Earth-sized worlds at the limit of the telescope’s capabilities. While Kepler has an automated pipeline to identify likely planets, simulated data suggests it recovers just 26% of Earth-sized planets on orbits similar to our own. Exploring new ways to handle these huge data sets is therefore a top priority.

While neural networks all learn to identify patterns from a series of examples, there are different choices for their structure. In their discovery paper, Shallue and Vanderburg try three different network architectures. The one they find the most successful is known as a “Convolution Neural Network”, which is commonly used in image classification.

Neural networks are loosely inspired by the structure of the human brain: “Neurons” do a simple computation and then pass information to the next layer of neurons. In this way, a computer can “learn” to identify a dog in an image, or an exoplanet in a Kepler light curve.  (Google)

This utilizes the fact that neighboring data points may form related structures, examining attributes such as the maximum and minimum of small local groups of points to hunt for features. This makes sense when your input data is the light from a star being consecutively dimmed by the passage of a planet.

In this first exploration, the neural network searched for undiscovered planets in known systems. The network found a total of 30 possible new planets, four of which it assigned a probability greater than 0.9 of this being a true detection. Based on the network’s performance when tested on known planets, this level of probability corresponded to a correctly identified planet 96% of the time.

These four candidates were then examined by Shallue and Vanderburg for alternative reasons for the dip in the light curve. Such false positives can be caused by the star being part of a binary system, where the stellar siblings periodically eclipse one another to produce small drops in their combined light. One candidate fell foul of having a close stellar neighbor which may have been causing this effect, while a second candidate showed a light dip that increased over time; an effect not expected by a planet. For the remaining two possibilities, there were no obvious reservations. These were really two new planets; Kepler-90i and Kepler-80g.

While neither new exoplanet is likely to be Earth-like, both belong to intriguing planetary systems. Kepler-80g is the outermost world of a compact system of six planets, all with orbits between 1 – 10 days. The outer five planets form a “resonant chain”; a musical-sounding term that means that the duration of the orbits of neighboring planets are neat integer ratios (in this case, either 2:3 or 3:4).

This orderly line-up is seen in the orbits of the Jovian moons, Io, Europa and Ganymede, and more recently, in the TRAPPIST-1 exoplanet system that hit the headlines last February. Computer models suggest that resonant orbits are formed when planets migrate inwards from a location further out from their star. This is likely how such a close stack of planets exists so close to the star, where we do not expect a lot of planet-building dust and gas.

The second planet hit the media headlines because its addition made Kepler-90 the first known star other than our own Sun to host eight planets. Also like our Solar System, the Kepler-90 planets have the giant gaseous worlds further from the star and the smaller rocky planets closer in. However, these planets all sit within the orbit of the Earth around the Sun, suggested that they too migrated inwards from colder reaches where ice could solidify and help build-up the mass of the giant planets.

Kepler-90i is 2,545 light-years away from Earth and orbits its host star in 14.45 days. (NASA)

Notably, Kepler-90i is right at the limit of what Kepler is sensitive enough to detect. This means the system may well have more planets that are too small and distant from their star for Kepler to spot.

In addition to finding these small planets, the size of their planetary systems underscores the potential of the neural network. The evolution of a planet depends heavily on its neighbors. The Earth may have been a dry world if our gas giants had not swept in icy meteorites to deliver oceans to our surface. Mars’s build-up of ice changes substantially over time as the planet’s axis wobbles due to the looming presence of Jupiter.

Such conditions can be modeled, but only if the full planetary system is known. Uncovering the planets around known host stars helps constrain models of how planets form and evolve, and even hint at which worlds may have remained temperate enough to develop life. Picking out the smaller worlds in a starlight signature crowded by other planets is as tricky as spotting a bus in the morning rush hour before tea; it could need this computer algorithm on the job.

Last week’s announcement may show the beginning of a new regime of planet hunting; one where we shake-out the smaller worlds hidden in noisy data. This could provide us both with more small planets and many more multi-planet systems, helping us pin down the most likely places we may find another planet like our own or even one most likely to be completely alien.

 

Elizabeth Tasker is a planetary scientist at the Japanese space agency JAXA and the Earth-Life Science Institute in Tokyo.  Her newly-released book is titled “The Planet Factory.”

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Can You Overwater a Planet?

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Water worlds, especially if they have no land on them, are unlikely to be home to life, or at least lifewe can detect.  Some of the basic atmospheric and mineral cycles that make a planet habitable will be absent. Cool animation of such a world. (NASA)

By guest columnist Elizabeth Tasker

 

Wherever we find water on Earth, we find life. It is a connection that extends to the most inhospitable locations, such as the acidic pools of Yellowstone, the black smokers on the ocean floor or the cracks in frozen glaciers. This intimate relationship led to the NASA maxim, “Follow the Water”, when searching for life on other planets.

Yet it turns out you can have too much of a good thing. In the November NExSS Habitable Worlds workshop in Wyoming, researchers discussed what would happen if you over-watered a planet. The conclusions were grim.

Despite oceans covering over 70% of our planet’s surface, the Earth is relatively water-poor, with water only making up approximately 0.1% of the Earth’s mass. This deficit is due to our location in the Solar System, which was too warm to incorporate frozen ices into the forming Earth. Instead, it is widely — though not exclusively — theorized that the Earth formed dry and water was later delivered by impacts from icy meteorites. It is a theory that two asteroid missions, NASA’s OSIRIS-REx and JAXA’s Hayabusa2, will test when they reach their destinations next year.

But not all planets orbit where they were formed. Around other stars, planets frequently show evidence of having migrated to their present orbit from a birth location elsewhere in the planetary system.

One example are the seven planets orbiting the star, TRAPPIST-1. Discovered in February this year, these Earth-sized worlds orbit in resonance, meaning that their orbital times are nearly exact integer ratios. Such a pattern is thought to occur in systems of planets that formed further away from the star and migrated inwards.

 

Trappist-1 and some of its seven orbiting planets.  They would have been sterilized by high levels of radiation in the early eons of that solar system — unless they were formed far out and then migrated in.  That scenario would also allow for the planets to contain substantial amounts of water. (NASA)

The TRAPPIST-1 worlds currently orbit in a temperate region where the levels of radiation from the star are similar to that received by our terrestrial worlds. Three of the planets orbit in the star’s habitable zone, where a planet like the Earth is most likely to exist.

However, if these planets were born further from the star, they may have formed with a high fraction of their mass in ices. As the planets migrated inwards to more clement orbits, this ice would have melted to produce a deep ocean. The result would be water worlds.

With more water than the Earth, such planets are unlikely to have any exposed land. This does not initially sound like a problem; life thrives in the Earth’s seas, from photosynthesizing algae to the largest mammals on the planet. The problem occurs with the planet itself.

The clement environment on the Earth’s surface is dependent on our atmosphere. If this envelope of gas was stripped away, the Earth’s average global temperature would be about -18°C (-0.4°F): too cold for liquid water. Instead, this envelope of gases results in a global average of 15°C (59°F).

Exactly how much heat is trapped by our atmosphere depends on the quantity of greenhouse gases such as carbon dioxide. On geological timescales, the carbon dioxide levels can be adjusted by a geological process known as the “carbon-silicate cycle”.

In this cycle, carbon dioxide in the air dissolves in rainwater where it splashes down on the Earth’s silicate rocks. The resulting reaction is termed “weathering”. Weathering forms carbonates and releases minerals from the rocks that wash into the oceans. Eventually, the carbon is released back into the air as carbon dioxide through volcanoes.

Continents are not only key for habitability because they sources of minerals and needed elements but also because they allow for plate tectonics — the movements and subsequent crackings of the planet’s crust that allow gases to escape.  Those gases are needed to produce an atmosphere.  (National Oceanic and Atmospheric Administration)

The rate of weathering is sensitive to temperature, slowing when he planet is cool and increasing when the temperature rises. This allows the Earth to maintain an agreeable climate for life during small variations in our orbit due to the tug of our neighboring planets or when the sun was young and cooler. The minerals released by weathering are used by all life on Earth, in particular phosphorous which forms part of our DNA.

However, this process requires land. And that is a commodity a water world lacks. Speaking at the Habitable Worlds workshop, Theresa Fisher, a graduate student at Arizona State University, warned against the effects of submerging your continents.

Fisher considered the consequences of adding roughly five oceans of water to an Earth-sized planet, covering all land in a global sea. Feasible, because weathering could still occur with rock on the ocean floor, though at a much reduced efficiency. The planet might then be able to regulate carbon dioxide levels, but the large reduction in freed minerals with underwater weathering would be devastating for life.

Despite being a key element for all life on Earth, phosphorus is not abundant on our planet. The low levels are why phosphorous is the main ingredient in fertilizer. Reduce the efficiency with which phosphorous is freed from rocks and life will plummet.

Such a situation is a big problem for finding a habitable world, warns Steven Desch, a professor at Arizona State University. Unless life is capable of strongly influencing the composition of the atmosphere, its presence will remain impossible to detect from Earth.

“You need to have land not to have life, but to be able to detect life,” Desch concludes.

However, considerations of detectability become irrelevant if even more water is added to the planet. Should an Earth-sized planet have fifty oceans of water (roughly 1% of the planet’s mass), the added weight will cause high pressure ices to form on the ocean floor. A layer of thick ice would seal the planet rock away from the ocean and atmosphere, shutting down the carbon-silicate cycle. The planet would be unable to regulate its surface temperature and trapped minerals would be inaccessible for life.

Add still more water and Cayman Unterborn, a postdoctoral fellow at Arizona State, warns that the pressure will seal the planet’s lid. The Earth’s surface is divided into plates that are in continual motion. The plates melt as they slide under one another and fresh crust is formed where the plates pull apart. When the ocean weight reaches 2% of the planet’s mass, melting is suppressed and the planet’s crust grinds to a halt.

A stagnant lid would prevent any gases trapped in the rocks during the planet’s formation from escaping. Such “degassing” is the main source of atmosphere for a rocky planet. Without such a process, the Earth-sized deep water world could only cling to an envelop of water vapor and any gas that may have escaped before the crust sealed shut.

Unterborn’s calculations suggest that this fate awaits the TRAPPIST-1 planets, with the outer worlds plausibly having hundreds of oceans worth of water pressing down on the planet.

So can we prove if TRAPPIST-1 and similarly migrated worlds are drowning in a watery grave? Aki Roberge, an astrophysicist at NASA Goddard Space Flight Center, notes that exoplanets are currently seen only as “dark shadows” briefly reducing their star’s light.

However, the next generation of telescopes such as NASA’s James Webb Space Telescope, will aim to change this with observations of planetary atmospheres. Intertwined with the planet’s geological and biological processes, this cloak of gases may reveal if the world is living or dead.

 

Elizabeth Tasker is a planetary scientist and communicator at the Japanese space agency JAXA and the Earth-Life Science Institute (ELSI) in Tokyo.  She is also author of a new book about planet formation titled “The Planet Factory.”

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail