All About Emergence

Facebooktwittergoogle_plusredditpinterestlinkedinmail
A swarm of birds act as an emergent whole as opposed to a collection of individual birds. The workings of swarms have been fruitfully studied by artificial life scientists, who look for abstracted insights into life via computers and other techniques. (Walerian Walawski)

 

If there was a simple meaning of the often-used scientific term “emergence,” then 100-plus scientists wouldn’t have spent four days presenting, debating and not infrequently disagreeing about what it was.

But as last month’s organizers of the Earth-Life Science Institute’s “Comparative Emergence” symposium in Tokyo frequently reminded the participants, those debates and disputes are perfectly fine and to be expected given the very long history and fungibility of the concept.

At the same time, ELSI leaders also clearly thought that the term can have resonance and importance in many domains of science, and that’s why they wanted practitioners to be exposed more deeply to its meanings and powers.

Emergence is a concept commonly used in origins of life research, in complexity and artificial life science; less commonly in chemistry, biology, social and planetary sciences; and — originally – in philosophy. And in the 21st century, it is making a significant comeback as a way to think about many phenomena and processes in the world.

So what is “emergence?” Most simply, it describes the ubiquitous and hugely varied mechanisms by which simple components in nature (or in the virtual or philosophical world) achieve more complexity, and in the process become greater than the sum of all those original parts.

The result is generally novel, often surprising, and sometimes most puzzling – especially since emergent phenomena involve self-organization by the more complex whole.

Think of a collection of ants or bees and how they join leaderless by the many thousands to make something – a beehive, an ant colony – that is entirely different from the individual creatures.

 

The Eagle nebula is an intense region of star formation, an emergent phenomenon
that clearly creates something novel out of simpler parts. (European Space Observatory.)

Think of the combination of hydrogen and oxygen gases which make liquid water. Think of the folding of proteins that makes genetic information transfer possible. Think of the processes by which bits of cosmic dust clump and clump and clump millions of times over and in time become a planetesimal or perhaps a planet. Think of how the firing of the billions of neurons in your brain results in consciousness.

All create complexity out of component parts, produce something irreducible from those original parts, and all have been resistant to a full explanation using the usual reductionist tools of the scientific world. This doesn’t mean that something magical or divine is going on – rather, that either humans have not figured out what happens or that what happens is not comprehensible given our understanding of the laws of nature and physics.

Heady stuff, which is why the study and use of the concept of emergence has become increasingly widespread as a tool, or perhaps a pathway, to address complex problems.

Luis Campos is a historian of science and was Baruch S. Blumberg NASA/Library of Congress Chair in Astrobiology. (Nerissa Escanlar)

Before going on, a little history is in order. Luis Campos, a historian of science at the University of New Mexico and the most recent Baruch S. Blumberg NASA/Library of Congress Chair in Astrobiology, described the concept of philosophical and scientific emergence – though not the word — as going back to the Greeks, at least.

The term “emergence” comes from the Latin verb emergo which means to arise, to rise up. Its meaning and importance have ebbed and flowed, with a major flowering in the United Kingdom in the 1920s.

It is seldom discussed, Campos said at the ELSI symposium, but the modern concepts of emergence flow to some extent from dialectics of Hegel, Marx and Engels, as well as the holism of South Africa’s controversial leader and thinker, Jan Smuts.

Campos said the “emergence” of today is quite different from those iterations. His point, he said, is that major scientific approaches grow from the societal bedrock of their times – and today that means a willingness to consider possible limits to the strict scientific reductionism of the modern era.

In philosophical terms, and generally in the history of science, there are several basic forms of emergence.

The first involves surprising complexity that arises unexplained and remains so at a particular scale, though science may catch up some day and provide plausible explanations. The formation of stars and galaxies and black holes would all be considered emergent phenomena, but astrophysics is gradually learning many of the processes that allow immeasurable complexity to appear throughout the cosmos – all from the simplest of components.

The other involves complex phenomena that appear to be beyond the capacity of physical or natural laws to ever explain. The quantum world, for instance, includes the phenomenon called quantum entanglement – a physical sensation which occurs when

The endlessly different symmetrical and fractal patterns of snowflakes are an emergent phenomenon given that each starts with the same basic material and ends up looking different. (Wilson Bentley)

pairs or groups of particles cannot be described independently of the state of the other, even when the particles are separated by a large distance.

So while emergence may be, as information scientist Francis Heylighen of the Vrije Universiteit in Brussel argued at the ELSI symposium, “simple, common and natural,” it also comes in innumerable forms that can seem mysterious or, as described in the quantum world, “spooky.”

David Pines, a co-founder of the Santa Fe Institute, which specializes in complexity studies, illustrated the dimensions of the emergence debate when he wrote about it several years ago for the online publishing site “Medium.”

“We live in an emergent universe,” he wrote, “in which it is difficult, if not impossible, to identify any existing interesting scientific problem or study any social or economic behavior that is not emergent.”

In the presence of claims like this, emergence has become a phenomenon where scientific consensus – or even agreement – can be difficult to achieve. Is it a trite “buzzword,” as some argue?  Or is it a profound and important pathway to understand underlying phenomena of the world that cannot be adequately described by reductionist, deterministic science?

Some of the modern pioneers in thinking about emergence come from the world of Artificial Life, or ALife. Using computer simulations, ALife researchers study essential properties of living systems such as evolution and adaptive behavior. Since the evolutionary clock cannot go backwards to see the what attributes are inevitable and what is more random, ALife analyzes these kinds of processes by simulating lifelike behaviors and patterns within computers.

As described at the ELSI symposium by University of Tokyo ALife and complex systems specialist Takashi Ikegami, decades of work in the ALife field have led to the conclusion that the pathways to life and consciousness are created by a cascade of emergent phenomena possessing the capability for “open-ended evolution.”

 

Takashi Ikegami and an android he helped build as part of his decades of work in the field of Artificial Life. (Bloomberg News)

 

And with computing power still increasing steadily, he said that the scale at which emergent properties can be identified and traced will similarly increase. As an example of how faster and larger computers can and will scale up ALife experiments and research, he told the story of the Rubik’s cube and what became known as “God’s algorithm.”

For 30 years, mathematicians and others working to solve the famous cube puzzle concluded that the minimum number of moves needed to complete the task was 22. This was not based on the experience of some Rubik’s cube fans, but rather of sustained mathmatical analysis.

But then in 2010 a teams of computer scientists and mathemeticians with access to Google’s supercomputers found that the minimum number of moves for any of the 43 quadrillion Rubik’s position was actually a very surprising 20. This result, Ikegami argues, is a reflection of the emergence of new technological capabilities in the last decade that are changing the world.

Some other classic artificial life simulations involve virtual birds or fish that are given some very simple rules to follow about how close individuals can approach each other and how they should steers in relation to other flock or schoolmates. Those simple instructions lead to the formation of virtual swarms and schools of enormous complexity that emerge from the individual-to-group transition.

An example of the unexpected behavior that can emerge: A flock splits to avoid an obstacle and then reunite once passed.

ALife is virtual, but emergence is everywhere in the natural world as well once you know what to look for. Bénard cells, for instance, are geometrically regular convection structures that spontaneously form in water or other thicker fluids when it is heated from below and/or cooled from above.

 

Benard cells formed spontaneously by convection in fluids.

The cells are formed as the hotter fluid rises and the cooler sinks, a process that results in spontaneous self-organization into a regular pattern of cells. The cells would be considered to be emergent phenomena.

John Hernlund is a geophysicist and vice director ELSI, and was the lead science organizer for the conference.

“Bénard convection is a composite phenomenon that arises from the combination of simpler processes: thermal expansion, Archimedes principle, thermal conduction, and viscous resistance to shearing motion in a fluid,” he said. “Nothing about those basic constituent processes alone would enable you to predict that their combination would yield the beautiful regular geometric patterns seen in Bénard cells, and this is why these are often used as an example of emergent behavior.”

Astrophysicist Elizabeth Tasker, a professor and communicator for the Japanese Space Agency JAXA, chaired an early session on emergence which focused on how the universe and planets were formed. She said her field has generally not described that 13.7 billion year process that followed the Big Bang in terms of emergent phenomenon, but that over the week she gradually saw the usefulness and did so in particularly compelling terms.

“As an astrophysicist,” she said. “I began to see the history of the universe as a manga, with examples of emergence forming the individual frames: matter strewn around the cosmos was drawn by gravity into structures that became galaxies, gas collapsed until fusion birthed a star, rocky boulders accreted and then began to melt and circulate to produce plate tectonics.

“Each manga frame represented the introduction of a new property of the universe, one that could not be exhibited by the individual pieces that had created it. A lone gas molecule could not show the spinning spiral of a galactic disc, nor begin to fuse elements within a star. Likewise, the rocky pieces that formed a planet could not start the circulation of plate tectonics by themselves. Neighboring interactions created a system that could spawn an entirely new process.”

Alex Penn, a complexity scientist at the University of Surrey.

 

While emergence is most often understood in terms of physical systems, and then virtual systems that try to capture their patterns and laws, the concept also has a presence in the social and economic sciences as well.

Alex Penn of the University of Surrey, in fact, introduced emergence in the social spheres and humanities as emergent on a scale similar to what Daniel Pines said about science. “Basically, almost everything of significance that arises in the social world is emergent,” she said.

Those phenomena ranged from the rise of different kinds of economic levels of development to political movements, cultures and down to the raising of children and residential segregation.

That housing segregation has been studied sufficiently that it has been determined that when a self-identifying group becomes less than one-third of the neighborhood population, they will begin to move to move out to be closer to those they identify with. Within a relatively short period of time, a mixed neighborhood will emerge into a segregated community via self-organization.

 

The Schelling model of what happens as neighborhoods self-segregate.

 

Other examples of emergence put forward from the social and cultural worlds include traffic jams, improv jazz performances and marriage. (A married person remains themselves, but also become part of a larger and more complex entity, from which novelty and surprise are sure to arise.)

Since the emergence symposium was taking place at an institute focused on how our planet formed and how life later appeared, it was only natural that emergence in that realm was a frequent topic. How a world without biology became one with biology is emergence writ large, with simplicity transforming to complexity innumerable times in innumerable ways.

While scientists speak of the Last Universal Common Ancestor (LUCA) as the source from which all life today arose, it is also widely held that other proto-life existed and disappeared because it could not compete successfully.

The ELSI model of that process is often presented as a kind of hourglass, where evolution of all kinds — in minerals, in prebiotic polypeptides, in simple organisms – creates new systems that take over and expand until they reach a bottleneck that stops the advance. Only a newly evolved version of the entity can make it through to the next step.

Participants including evolutionary biologist Simonetta Gribaldo of the Institut Pasteur argued that there is good reason to conclude that these processes were playing out wherever they could on the early Earth, doubtless resulting in many versions of prebiotic and proto-life before the Last Universal Common Ancestor (LUCA). In other words, the path to and beyond LUCA was not only messy but had many failed efforts along the way.

It fell to geochemist and geomicrobiologist Karyn Rogers of Rensselaer Polytechnic Institute to put it all into the context of emergence.

Long active in origin of life science, she said that she has become very uncomfortable with that description of what the field is trying to understand. Like many others, she does not see the “origin of life” as a singular phenomenon and so she moved to “origins of life.”

But “origins,” too, didn’t seem right because it seemed to focus too narrowly on the compounds and processes directly associated with life. She (and others) saw a larger picture.

Rogers said she doesn’t think scientists can talk about how biology appeared and prospered without also talking about the the mineral and geochemical world from which it arose

Karyn Rogers’ research focuses on the relationships between microbial communities and environmental conditions in extreme ecosystems. (Nerissa Escanlar)

Her conclusion, then, about how to describe what happened on prebiotic Earth so long ago:

“It’s the emergence of life,” she said at the end of the symposium, not the “origin”.

“One of interesting things about emergence is that it’s that smudgy place in between that we can’t quite describe. We know it’s necessary to go from an abiotic planet to a biotic planet, but can’t quite really wrap our minds on it.

“It’s not even a series of events, it’s a series of events that led to life plus all the stuff around it as well that didn’t lead to life…all the surrounding processes. I think you need all that for life to emerge.”

She said she came into the symposium convinced that the “emergence of life” was the way to see the our biological beginnings, but that hearing about the many other understandings of emergence led her to think she didn’t understand the concept and would have to revise her views. But by the end she was back to emergence, but with a difference.

Perhaps, she said, the group could consider having “emergence” and “smudginess” become synonyms for that cross-discipline arena of simple-to-significantly more-complex transitions they had been discussing all week.

The idea was embraced by many of the other scientists.

 

A Livestream of the symposium is available here.

 

 

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Moon-Forming Impact And Its Gifts

Facebooktwittergoogle_plusredditpinterestlinkedinmail

 

Rice University petrologists have found Earth most likely received the bulk of its carbon, nitrogen and other life-essential volatile elements from the planetary collision that created the moon more than 4.4 billion years ago. (Rice University)

 

The question of how life-essential elements such as carbon, nitrogen and sulfur came to our planet has been long debated and is a clearly important and slippery scientific subject.

Did these volatile elements accrete onto the proto-Earth from the sun’s planetary disk as the planet was being formed?  Did they arrive substantially later via meteorite or comet?  Or was it the cataclysmic moon-forming impact of the proto-Earth and another Mars-sized planet that brought in those essential elements?

Piecing this story together is definitely challenging,  but now there is vigorous support for one hypothesis — that the giant impact brought us the elements would later be used to enable life.

Based on high pressure-temperature experiments, modeling and simulations, a team at Rice University’s Department of Earth, Environmental and Planetary Sciences makes that case in Science Advances for the central role of the proto-planet called Theia.

“From the study of primitive meteorites, scientists have long known that Earth and other rocky planets in the inner solar system are volatile-depleted,” said study co-author Rajdeep Dasgupta. “But the timing and mechanism of volatile delivery has been hotly debated. Ours is the first scenario that can explain the timing and delivery in a way that is consistent with all of the geochemical evidence.”

“What we are saying is that the impactor definitely brought the majority supply of life-essential elements that we see at the mantle and surface today,” Dasgupta wrote in an email.

 

A schematic depicting the formation of a Mars-sized planet (left) and its differentiation into a body with a metallic core and an overlying silicate reservoir. The sulfur-rich core expels carbon, producing silicate with a high carbon to nitrogen ratio. The moon-forming collision of such a planet with the growing Earth (right) can explain Earth’s abundance of both water and major life-essential elements like carbon, nitrogen and sulfur, as well as the geochemical similarity between Earth and the moon. (Rajdeep Dasgupta; background photo of the Milky Way galaxy is by Deepayan Mukhopadhyay)

 

Some of their conclusions are based on the finding of a similarity between the isotopic compositions of nitrogen and hydrogen in lunar glasses and in the bulk silicate portions of the Earth.  The Earth and moon volatiles, they conclude, “have a common origin.”

Carbon, nitrogen and sulfur are deemed “volatile” elements because they have a relatively low boiling point and can easily fly off into space from planets and moons in their early growing stages.  A number of other life-important chemicals, including water, are volatiles as well.

The recent findings are grounded in a series of experiments by study lead author and graduate student Damanveer Grewal, who works in the Dasgupta lab.  Grewal gathered evidence to test the theory that Earth’s volatiles arrived when the embryonic planet Theia — that had a sulfur-rich core — crashed into very early Earth.

The sulfur content of the donor planet’s core matters because of the puzzling evidence about the carbon, nitrogen and sulfur that exist in all parts of the Earth — other than the core.  The team needed to test the conditions under which a core with sulfur could, in effect, exclude other volatiles, thus making them more common in the planet’s mantle and above — and as a result more available to a planet it might crash into.  

The high temperature and pressure tests led to a computer simulation to find the most likely scenario that produced Earth’s volatiles. Finding the answer involved varying the starting conditions, running approximately 1 billion scenarios and comparing them against the known conditions in the solar system today.

 

Carbonaceous chondrites include some of the most primitive known meteorites, including the iconic Allende meteorite. Some scientists have proposed they delivered volatiles to Earth, but this latest paper disputes that conclusion.

“What we found is that all the evidence — isotopic signatures, the carbon-nitrogen ratio and the overall amounts of carbon, nitrogen and sulfur in the bulk silicate Earth — are consistent with a moon-forming impact involving a volatile-bearing, Mars-sized planet with a sulfur-rich core,” Grewal said.

Another often-cited explanation about how Earth received its volatiles is the “late veneer” theory, which holds that volatile-rich meteorites, leftover chunks of primordial matter from the outer solar system, arrived after Earth’s core formed.

And while the isotopic signatures of Earth’s volatiles match these primordial objects, known as carbonaceous chondrites, the elemental ratio of carbon to nitrogen is off. Earth’s non-core material, which geologists call the bulk silicate Earth, has about 40 parts carbon to each part nitrogen, approximately twice the 20-1 ratio seen in carbonaceous chondrites. 

This led to their conclusion that the late veneer theory could not explain the conditions they had found.

Although the Rice team’s paper does not go in depth into the question of how water got to Earth, Dasgupta wrote that the team’s conclusion that the moon-forming impact brought with it other volatiles, “it is likely that the impactor would contain and bring some water too. This is especially likely because this impactor needs to form in part from oxidized carbonaceous chondritic materials (that is the condition our experiments simulated as well).

“So although we did not factor in matching the water budget in our model, it is entirely possible that this impactor brought Earth’s water budget too, if the proto-Earth was water-poor.”

 

A study by Rice University scientists (from left) Gelu Costin, Chenguang Sun, Damanveer Grewal (sitting), Kyusei Tsuno, and Rajdeep Dasgupta found Earth most likely received the bulk of its carbon, nitrogen, and other life-essential elements from the planetary collision that created the moon more than 4.4 billion years ago. The findings appear in the journal Science Advances. (Jeff Fitlow/Rice University)

 

Dasgupta, the principal investigator on a NASA-funded effort called CLEVER Planets that is exploring how life-essential elements might come together on distant rocky planets, said better understanding the origin of Earth’s life-essential elements has implications beyond our solar system.

“This study suggests that a rocky, Earth-like planet gets more chances to acquire life-essential elements if it forms and grows from giant impacts with planets that have sampled different building blocks, perhaps from different parts of a protoplanetary disk,” Dasgupta said.

“This removes some boundary conditions,” he said. “It shows that life-essential volatiles can arrive at the surface layers of a planet, even if they were produced on planetary bodies that underwent core formation under very different conditions.”

Dasgupta said it does not appear that Earth’s initial composition of bulk silicate, on its own,  could have attained the concentrations of those life-essential volatiles needed to produce our atmosphere and hydrosphere and biosphere.

This all has great implications for exoplanet studies, he said.  It means that “we can broaden our search for pathways that lead to volatile elements coming together on a planet to support life as we know it.”

CLEVER Planets is part of the Nexus for Exoplanet System Science, or NExSS, a NASA astrobiology research coordination network that is dedicated to the study of planetary habitability. CLEVER Planets involves more than a dozen research groups from Rice, NASA’s Johnson Space Center, UCLA, the University of Colorado Boulder and the University of California, Davis.

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Artifacts In Space

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Voyager 2 entered interstellar space last month, becoming a space “artifact” of our civilization. (NASA)

 

All of a sudden, we have spacecraft and objects both coming into our solar system and leaving for interstellar space. This is highly unusual, and very intriguing.

The departing spacecraft is Voyager 2, which launched in 1977 and has traveled spaceward some 11 billion miles.  It has now officially left the heliosphere, the protective bubble of particles and magnetic fields created by the sun.  In this it follows Voyager I – which left our solar system in 2012 — and managers of the two craft have reason to think they can travel until they cross the half-century mark.

This is taking place the same time that scientists are puzzling over the nature of a cigar-shaped object that flew into the solar system from interstellar space last year.

Nobody knows what the object – called Oumuamua, Hawaiian for “first messenger,” or “scout” – really is. The more likely possibilities of it being a comet or an solar system asteroid have been found to be inconsistent with some observed properties of the visitor, and this has led some senior scientists to even hypothesize that it just might be an alien probe.

The likelihood may be small, but it was substantial enough for Harvard University Astronomy Department Chairman Avi Loeb to co-author a paper presenting the possibility.  In the Astrophysical Journal Letters, Loeb and postdoc Shmuel Bialy wrote that the object “may be a fully operational probe sent intentionally to Earth vicinity by an alien civilization.”

They also say the object has some characteristics of a “lightsail of artificial origins,” rather like the one that Loeb is working on as chairman of the Breakthrough Starshot advisory committee.  The well-funded private effort is hoping to develop ways to send a fleet of tiny lightsail probes to the star system nearest to us, Alpha Centauri.

 

This artist’s impression of the first detected interstellar visitor: Oumuamua. This object was discovered in October 2017 by the Pan-STARRS 1 telescope in Hawaii. Subsequent observations from ESO’s Very Large Telescope in Chile and other observatories around the world show that it was traveling through space for millions of years before its seemingly chance encounter with our star system.  But some scientists wonder:  might it be instead a probe sent into the cosmos by intelligent creatures?(NASA)

 

Put the two phenomenon together — the coming into our solar system and the going out — and you have a pathway into the world of alien “artifacts,” products of civilizations near and far.  They are the kind of “technosignatures,” the potential or actual handwork of intelligent beings, that NASA is now interested in learning about more.

We know this because during a fall conference in Houston convened by NASA at the request of members of Congress, scientists were brought together to discuss many different kinds of potential signs of intelligent extraterrestrial life.  While artifacts were one of many topics discussed, the term carries a quite magnetic pedigree.

So far, that meaning is of course fictional, or a misreading of actual features.  There is perhaps most famously the monoliths from the movie “2001: A Space Odyssey” and then the myriad sightings of alien spacecraft that turn out to be anything but that.

This image taken by VIking 1 in the mid 1970s led to years of discussion about Martian beings having at one time carved what appeared to be a gigantic face. (NASA)

 

And then there’s the “Face on Mars.”

The original image taken by Viking 1 looked somewhat like a human face. The feature, found in the region where the highlands meet the northern plains of Mars, was subsequently broadly popularized as a potential “alien artifact,” with even a major motion picture.

So many people were convinced that an image had been sculpted on the surface of Mars that NASA ultimately put out a substantial release in 2001 to make clear that the face was actually a mountain.

That was after the Mars Global Surveyor orbiter determined that the “face” was created by unusual reflections in an otherwise ordinary Martian mountain.

This high-resolution image from the Mars Orbiter Camera about the Mars Global Surveyor spacecraft shows the famous “Face on Mars” in detail, clearly showing it to be a natural geological formation. (NASA/MSSS)

 

 

So alien artifacts surely and properly have a steep hill to climb before they can be taken at all seriously.

But does that mean they shouldn’t be taken seriously at all?  Loeb clearly says no, that they are a potential source of important and compelling science, even if they turn out to be unusual but natural phenomena.

And then there’s the question raised in the Houston “technosignatures” conference:  What actually is meant by an artifact?

Longtime SETI scientist and advocate Jill Tarter, for instance, wondered if the signatures of intelligent civilizations could be imprinted on neutrinos.  She said that a leak of the radioactive isotope tritium, which has a short 12-year half-life,  could also signal the presence of advanced life because (unless it’s near a supernova) it would have to come quite recently from a nuclear reactor.

Taking it further, she and others argued that artifacts of intelligent life would include many atmospheric and planetary changes that could only be accomplished by intelligent beings.  For instance, the presence of unnatural pollutants such as chloroflurocarbons (CFCs) or sulfur hexafluoride (SF6) in an exoplanet atmosphere would, in this view, be an “artifact” of civilization.

Back, now, to Voyager 2, which is for sure an extraterrestrial artifact.

 

Rendering of Voyager 2 in deep space. (NASA/JPL)

 

Voyager 2 was launched by NASA in August, 1977 to study the outer planets.  Part of the larger Voyager program, it was launched 16 days before its twin, Voyager 1, on a trajectory that took longer to reach Jupiter and Saturn but enabled further encounters with Uranus and Neptune.

Both have traveled far their original destinations. The spacecraft were built to last five years and conduct close-up studies of Jupiter and Saturn.  With the spacecraft holding up despite the rigors,  additional flybys of the two outermost giant planets, Uranus and Neptune, proved possible, and then the Voyagers were directed to interstellar space.

Their five-year lifespans have stretched to 41 years, making Voyager 2 NASA’s longest running mission ever.

At the on-going American Geophysical Union annual meeting, NASA project manager Suzanne Dodd said she believed that Voyager 2 can keep functioning for 5 to 10 more years in this new region of space, though not with all its instruments operating.

The greatest concerns about keeping the probes operating, she said, involve power and temperature. The  nuclear-powered Voyager 2 loses about 4 watts of power a year, and mission scientists have to shut off systems to keep instruments operating.

Voyager 2 is very cold — about 3.6 degrees Celsius and close to the freezing point of hydrazine — leading to concerns about the probe’s thruster that uses this fuel.  Dodd says she’s set a personal goal of keeping at least one of the Voyagers going until 2027, making it a 50-year mission.

The cameras for both probes are no longer on. But before the camera on Voyager 1 was decommissioned, it took the iconic “Pale Blue Dot” picture of the Earth.

 

 

This “Pale Blue Dot” image was captured in 1990, when Voyager 1 was about 4 million miles from Earth.  The spacecraft is now more than 13 billion miles from where it launched. (NASA)

 

In preparation for the potentially deep space travels for the Voyager spacecrafts, both were fitted with a greeting for any intelligent life that might be encountered.

The message is carried by a phonograph record – -a 12-inch gold-plated copper disk containing sounds and images selected to show the diversity of life and culture on Earth. The contents of the record were selected for NASA by a committee chaired by space scientist and popularizer Carl Sagan.  He and his associates assembled 115 images and a variety of natural sounds to give a sense of what Earth and Earthlings are like.

So are the Voyagers now artifacts from our civilization, messengers awaiting discovery by some distant beings?

Perhaps.  But they actually have not even left the solar system, and won’t be leaving anytime soon. They are in what is considered interstellar space, but the boundary of our solar system is beyond the outer edge of the Oort Cloud, a collection of small objects that are still under the influence of the sun’s gravity.

The width of the Oort Cloud is not known precisely, but it is estimated to begin at about 1,000 astronomical units (AU) from the sun and to extend to about 100,000 AU. One AU is the distance from the sun to Earth. It will take about 300 years for Voyager 2 to reach the inner edge of the Oort Cloud and possibly 30,000 years to fly beyond it.

 

The path of Oumuamua since it entered the solar system in 2017. (NASA)

 

Astronomers have long predicted that objects from other solar systems get shot out into space and arrive in our system.

The first identified interstellar object to visit our solar system, Oumuamua, was discovered in late 2017 by the University of Hawaii’s Pan-STARRS1 telescope as part of a NASA effort to search for and track asteroids and comets in Earth’s neighborhood.

While originally classified as a comet, observations revealed no signs of cometary activity after it was slingshotted around the sun at a remarkable 196,000 miles per hour.

Oumuamua seems to be a dark red highly-elongated metallic or rocky object that (at last analysis) is somewhere between 400 and 100 meters long and is unlike anything normally found in the solar system.  Researchers hypothesize that the shape and size suggest that the object has been wandering through the Milky Way, unattached to any star system, for hundreds of millions of years.

Karen Meech of the University of Hawaii first identified Oumuamua. Here she is giving a TED Talk.

Immediately after its discovery, telescopes around the world were called into action to measure the object’s trajectory, brightness and color.  Combining the images from several large telescopes,  a team of astronomers led by Karen Meech of the Institute for Astronomy in Hawaii found that Oumuamua varies in brightness by a factor of 10 as it spins on its axis every 7.3 hours.

 

Avi Loeb, chair of the Harvard Astronomy Department and an advocate of thinking way outside the box about Oumuamua.

 

No known asteroid or comet from our solar system varies so widely in brightness, with such a large ratio between length and width. The most elongated objects we have seen to date are no more than three times longer than they are wide.

“This unusually big variation in brightness means that the object is highly elongated: about ten times as long as it is wide, with a complex, convoluted shape,” said Meech. “We also found that it had a reddish color, similar to objects in the outer solar system, and confirmed that it is completely inert, without the faintest hint of dust around it.”

Oumuamua is headed out of the solar system now, so it’s unlikely more will be learned about it.  And with its odd shape and features, it clearly remains something of a mystery.

And that’s where Harvard’s Avi Loeb comes in.  Especially due to the remarkably fast speed with which Oumuamua entered the solar system, he argues that a probe sent by intelligent others cannot be ruled out, that science must be open minded.

“There is data on the orbit of this object for which there is no other explanation” than that it is the product of intelligent others,” he has said.  “The approach I take to the subject is purely scientific and evidence-based.”

Others strongly disagree.  But the views of the chairman of the Harvard astronomy department are nonetheless an intriguing part of the story.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Does Proxima Centauri Create an Environment Too Horrifying for Life?

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Artist’s impression of the exoplanet Proxima Centauri b. (ESO/M. Kornmesser)

 

In 2016, the La Silla Observatory in Chile spotted evidence of possibly the most eagerly anticipated exoplanet in the Galaxy. It was a world orbiting the nearest star to the sun, Proxima Centauri, making this our closest possible exoplanet neighbour. Moreover, the planet might even be rocky and temperate.

Proxima Centauri b had been discovered by discerning a periodic wobble in the motion of the star. This revealed a planet with a minimum mass 30% larger than the Earth and an orbital period of 11.2 days. Around our sun, this would be a baking hot world.

But Proxima Centauri is a dim red dwarf star and bathes its closely orbiting planet in a level of radiation similar to that received by the Earth. If the true mass of the planet was close to the measured minimum mass, this meant Proxima Centauri b would likely be a rocky world orbiting within the habitable zone.

 

Comparison of the orbit of Proxima Centauri  b with the same region of the solar system. Proxima Centauri is smaller and cooler than the sun and the planet orbits much closer to its star than Mercury. As a result it lies well within the habitable zone. (ESO/M. Kornmesser/G. Coleman.)

Sitting 4.2 light years from our sun, a journey to Proxima Centauri b is still prohibitively long.

But as our nearest neighbor, the exoplanet is a prime target for the upcoming generation of telescopes that will attempt to directly image small worlds. Its existence was also inspiration for privately funded projects to develop faster space travel for interstellar distances.

Yet observations taken around the same time as the La Silla Observatory discovery were painting a very different picture of Proxima Centauri. It was a star with issues.

This set of observations were taken with Evryscope; an array of small telescopes that was watching stars in the southern hemisphere. What Evryscope spotted was a flare from Proxima Centauri that was so bright that the dim red dwarf star became briefly visible to the naked eye.

Flares are the sudden brightening in the atmosphere of a star that release a strong burst of energy. They are often accompanied by a large expulsion of plasma from the star known as a “coronal mass ejection”. Flares from the sun are typically between 1027 – 1032 erg of energy, released in a few tens of minutes.

For comparison, a hydrogen bomb releases the equivalent of about 10 megatons of TNT or a mere 4 x 1023 erg. Hitting the Earth, energy from solar flares and coronal mass ejections can disrupt communication equipment and create a spectacular aurora.

A solar flare erupting from the right side of the sun. (NASA/SDO)

But the Proxima super-flare spotted by Evryscope was well beyond a regular stellar flare.

On March 18 in 2016, this tiny red dwarf emitted an energy belch of 1033.5 erg. The flare consisted of one major event and three weaker ones and lasted approximately one hour, during which time Proxima Centauri became 68 times brighter.

A sudden, colossal increase in the brightness of a star does not bode well for any closely orbiting planets.

However, such a major flare might well be rare. If the star was normally fairly quiet, perhaps a planet could recover from a single very disruptive flare in the same way the Earth has survived mass extinction events.

Led by graduate student Ward Howard at the University of North Carolina, Chapel Hill, the discovering team used Evryscope to monitor Proxima Centauri for flares for a total of 1344 hours between January 2016 and March 2018. What they found was a horrifying environment, as reported in The Astrophysical Journal Letters.

While an event on the scale of the Proxima super-flare was only seen once, 24 large eruptions were spotted from the red dwarf, with energies from 1030.5 to 1032.4 erg. Allowing for the fact the star had only been observed for a small part of the year, this pattern of energy outbursts meant that a massive super-flare (1033 erg) was likely to occur at least five times annually.

 

Artist’s impression of the surface of the planet Proxima Centauri b. But what would conditions be like so close to a flaring star? (ESO/M. Kornmesser)

 

But how important is this for the planet?

The Earth is protected from flares from our sun by our atmosphere. The ozone layer absorbs harmful ultraviolet radiation with wavelengths between about 2400 – 2800 Angstroms (10-10 m), preventing it reaching the surface. So what if Proxima Centauri b had a similar protective layer of gases as the Earth?

To answer this question, Howard and his team ran simulations of an Earth-like atmosphere on Proxima Centauri b.

As is the case for the sun, the team assumed that large flares would be frequently accompanied by a coronal mass ejection. Radiation and stellar material then flooded over an Earth-like Proxima Centauri b at the observed rate. And the atmosphere crumbled.

 

Ward Howard, astrophysicist at the University of North Carolina.

High energy particles in the coronal mass ejections split the nitrogen molecules (N2) in the atmosphere, which reacted with the ozone (O3) to form nitrogen oxide (NO2). After just 5 years, 90% of the ozone in the atmosphere was lost and the amount was still decreasing.

Without ozone, the surface of Proxima Centauri b would be stripped of its protection from UV radiation. During the Proxima super-flare, the radiation dose without the protective ozone would be 65 times larger than that needed to kill 90% of one of the most UV-resilient organisms on Earth.

“Life would have to undergo extreme adaptation to UV or exist underground or underwater,” Howard notes. “Only the most resistant organisms could survive on the surface in this environment.”

The simulation does assume that Proxima Centauri b does not have a magnetic field. Such a shield could channel the particles from the coronal mass ejection to the poles, forming the aurora as on Earth and reducing the damage to the atmosphere.

However, orbiting so close to the star, Proxima Centauri b is likely to be in tidal lock as the moon is to the Earth. This is expected to weaken the magnetic field, as the slower rotation makes it harder to create a magnetic dynamo within the planet.

So if the protective shields are lowered on Proxima Centauri b, is our nearest planet a world populated by highly resistant UV organisms? Or have we seen evidence that rather than warming the planet to allow life to exist, this star has snuffed it out?

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Technosignatures and the Search for Extraterrestrial Intelligence

Facebooktwittergoogle_plusredditpinterestlinkedinmail
A rendering of a potential Dyson sphere, named after Freeman A. Dyson. As proposed by the physicist and astronomer decades ago, they would collect solar energy on a solar system wide scale for highly advanced civilizations. (SentientDevelopments.com)

The word “SETI” pretty much brings to mind the search for radio signals come from distant planets, the movie “Contact,” Jill Tarter, Frank Drake and perhaps the SETI Institute, where the effort lives and breathes.

But there was a time when SETI — the Search for Extraterrestrial Intelligence — was a significantly broader concept, that brought in other ways to look for intelligent life beyond Earth.

In the late 1950s and early 1960s — a time of great interest in UFOs, flying saucers and the like — scientists not only came up with the idea of searching for distant intelligent life via unnatural radio signals, but also by looking for signs of unexpectedly elevated heat signatures and for optical anomalies in the night sky.

The history of this search has seen many sharp turns, with radio SETI at one time embraced by NASA, subsequently de-funded because of congressional opposition, and then developed into a privately and philanthropically funded project of rigor and breadth at the SETI Institute.  The other modes of SETI went pretty much underground and SETI became synonymous with radio searches for ET life.

But this history may be about to take another sharp turn as some in Congress and NASA have become increasingly interested in what are now called “technosignatures,” potentially detectable signatures and signals of the presence of distant advanced civilizations.  Technosignatures are a subset of the larger and far more mature search for biosignatures — evidence of microbial or other primitive life that might exist on some of the billions of exoplanets we now know exist.

And as a sign of this renewed interest, a technosignatures conference was scheduled by NASA at the request of Congress (and especially retiring Republican Rep. Lamar Smith of Texas.)  The conference took place in Houston late last month, and it was most interesting in terms of the new and increasingly sophisticated ideas being explored by scientists involved with broad-based SETI.

“There has been no SETI conference this big and this good in a very long time,” said Jason Wright, an astrophysicist and professor at Pennsylvania State University and chair of the conference’s science organizing committee.  “We’re trying to rebuild the larger SETI community, and this was a good start.”

 

At this point, the search for technosignatures is often likened to that looking for a needle in a haystack. But what scientists are trying to do is define their haystack, determine its essential characteristics, and learn how to best explore it. (Wiki Commons)

 

During the three day meeting in Houston, scientists and interested private and philanthropic reps. heard talks that ranged from the trials and possibilities of traditional radio SETI to quasi philosophical discussions about what potentially detectable planetary transformations and by-products might be signs of an advanced civilization. (An agenda and videos of the talks are here.)

The subjects ranged from surveying the sky for potential millisecond infrared emissions from distant planets that could be purposeful signals, to how the presence of certain unnatural, pollutant chemicals in an exoplanet atmosphere that could be a sign of civilization.  From the search for thermal signatures coming from megacities or other by-products of technological activity, to the possible presence of “megastructures” built to collect a star’s energy by highly evolved beings.

Michael New is Deputy Associate Administrator for Research within NASA’s Science Mission Directorate. He was initially trained in chemical physics. (NASA)

All but the near infrared SETI are for the distant future — or perhaps are on the science fiction side — but astronomy and the search for distant life do tend to move forward slowly.  Theory and inference most often coming well before observation and detection.

So thinking about the basic questions about what scientists might be looking for, Wright said, is an essential part of the process.

Indeed, it is precisely what Michael New, Deputy Associate Administrator for Research within NASA’s Science Mission Directorate, told the conference. 

He said that he, NASA and Congress wanted the broad sweep of ideas and research out there regarding technosignatures, from the current state of the field to potential near-term findings, and known limitations and possibilities.

“The time is really ripe scientifically for revisiting the ideas of technosignatures and how to search for them,” he said.

He offered the promise of NASA help  (admittedly depending to some extent on what Congress and the administration decide) for research into new surveys, new technologies, data-mining algorithms, theories and modelling to advance the hunt for technosignatures.

 

Crew members aboard the International Space Station took this nighttime photograph of much of the Atlantic coast of the United States. The ability to detect the heat and light from this kind of activity on distant exoplanets does not exist today, but some day it might and could potentially help discover an advanced extraterrestrial civilization. (NASA)

 

Among the several dozen scientists who discussed potential signals to search for were the astronomer Jill Tarter, former director of the Center for SETI Research, Planetary Science Institute astrobiologist David Grinspoon and University of Rochester astrophysicist Adam Frank.  They all looked at the big picture, what artifacts in atmospheres, on surfaces and perhaps in space that advanced civilizations would likely produce by dint of their being “advanced.”

All spoke of the harvesting of energy to perform work as a defining feature of a technological planet, with that “work” describing transportation, construction, manufacturing and more.

Beings that have reached the high level of, in Frank’s words, exo-civilization produce heat, pollutants, changes to their planets and surroundings in the process of doing that work.  And so a detection of highly unusual atmospheric, thermal, surface and orbital conditions could be a signal.

One example mentioned by several speakers is the family of chemical chloroflourocarbons (CFCs,)  which are used as commercial refrigerants, propellants and solvents.

Astronomer Jill Tarter is an iconic figure in the SETI world and led the SETI Institute for 30 years. (AFP)

These CFCs are a hazardous and unnatural pollutant on Earth because they destroy the ozone layer, and they could be doing something similar on an exoplanet.  And as described in the conference, the James Webb Space Telescope — once it’s launch and working — could most likely detect such an atmospheric compound if it’s in high concentration and the project was given sufficient telescope time.

A similar single finding described by Tarter that could be revolutionary is the radioactive isotope tritium, which is a by-product of the nuclear fusion process.  It has a short half-life and so any distant discovery would point to a recent use of nuclear energy (as long as it’s not associated with a recent supernova event, which can also produce tritium.)

But there many other less precise ideas put forward.

Glints on the surface of planets could be the product of technology,  as might be weather on an exoplanet that has been extremely well stabilized, modified planetary orbits and chemical disequilibriums in the atmosphere based on the by-products of life and work.  (These disequilibriums are a well-established feature of biosignature research, but Frank presented the idea of a technosphere which would process energy and create by-products at a greater level than its supporting biosphere.)

Another unlikely but most interesting example of a possible technosignature put forward by Tarter and Grinspoon involved the seven planets of the Trappist-1 solar system, all tidally locked and so lit on only one side.  She said that they could potentially be found to be remarkably similar in their basic structure, alignment and dynamics. As Tarter suggested, this could be a sign of highly advanced solar engineering.

 

Artist rendering of the imagined Trappist-1 solar system that had been terraformed to make the planets similar and habitable.  The system is one of the closest found to our own — about 40 light years.

 

Grinspoon seconded that notion about Trappist-1, but in a somewhat different context.

He has worked a great deal on the question of today’s anthropocene era — when humans actively change the planet — and he expanded on his thinking about Earth into the galaxies.

Grinspoon said that he had just come back from Japan, where he had visited Hiroshima and its atomic bomb sites, and came away with doubts that we were the “intelligent” civilization we often describe ourselves in SETI terms.  A civilization that may well self destruct — a fate he sees as potentially common throughout the cosmos — might be considered “proto-intelligent,” but not smart enough to keep the civilization going over a long time.

Projecting that into the cosmos, Grinspoon argued that there may well be many such doomed civilizations, and then perhaps a far smaller number of those civilizations that make it through the biological-technological bottleneck that we seem to be facing in the centuries ahead.

These civilizations, which he calls semi-immortal, would develop inherently sustainable methods of continuing, including modifying major climate cycles, developing highly sophisticated radars and other tools for mitigating risks, terraforming nearby planets, and even finding ways to evolve the planet as its place in the habitable zone of its host star becomes threatened by the brightening or dulling of that star.

The trick to trying to find such truly evolved civilizations, he said, would be to look for technosignatures that reflect anomalous stability and not rampant growth. In the larger sense, these civilizations would have integrated themselves into the functioning of the planet, just as oxygen, first primitive and then complex life integrated themselves into the essential systems of Earth.

And returning to the technological civilizations that don’t survive, they could produce physical artifacts that now permeate the galaxy.

 

MeerKAT, originally the Karoo Array Telescope, is a radio telescope consisting of 64 antennas now being tested and verified in the Northern Cape of South Africa. When fully functional it will be the largest and most sensitive radio telescope in the southern hemisphere until the Square Kilometre Array is completed in approximately 2024. (South African Radio Astronomy Observatory)

 

This is exciting – the next phase Square kilometer Array (SKA2) will be able to detect Earth-level radio leakage from nearby stars. (South African Radio Astronomy Observatory)

 

While the conference focused on technosignature theory, models, and distant possibilities, news was also shared about two concrete developments involving research today.

The first involved the radio telescope array in South Africa now called MeerKAT,  a prototype of sorts that will eventually become the gigantic Square Kilometer Array.

Breakthrough Listen, the global initiative to seek signs of intelligent life in the universe, would soon announce the commencement of  a major new program with the MeerKAT telescope, in partnership with the South African Radio Astronomy Observatory (SARAO).

Breakthrough Listen’s MeerKAT survey will examine a million individual stars – 1,000 times the number of targets in any previous search – in the quietest part of the radio spectrum, monitoring for signs of extraterrestrial technology. With the addition of MeerKAT’s observations to its existing surveys, Listen will operate 24 hours a day, seven days a week, in parallel with other surveys.

This clearly has the possibility of greatly expanded the amount of SETI listening being done.  The SETI Institute, with its radio astronomy array in northern California and various partners, have been listening for almost 60 years, without detecting a signal from our galaxy.

That might seem like a disappointing intimation that nothing or nobody else is out there, but not if you listen to Tarter explain how much listening has actually been done.  Almost ten years ago, she calculated that if the Milky Way galaxy and everything in it was an ocean, then SETI would have listened to a cup full of water from that ocean.  Jason Wright and his students did an updated calculation recently, and now the radio listening amounts to a small swimming pool within that enormous ocean.

 

The NIROSETI team with their new infrared detector inside the dome at Lick Observatory. Left to right: Remington Stone, Dan Wertheimer, Jérome Maire, Shelley Wright, Patrick Dorval and Richard Treffers. (Laurie Hatch)

The other news came from Shelley Wright of the University of California, San Diego, who has been working on an optical SETI instrument for the Lick Observatory and beyond.

She has developed a Near-Infrared Optical SETI (NIROSETI)  instrument designed to search for signals from extraterrestrials at near-infrared wavelengths — a first. The near-infrared is an excellent spectral region to search for signals from extraterrestrials, since it offers a unique window for interstellar communication.  NIROSETI is now operating 8 to 12 nights per month, overseen by students at a remote location.

In addition, Wright and Harvard University’s Paul Horowitz have been working on a novel instrument for searching the full sky all the time for very short pulses of light — an idea that came out of a Breakthrough Listen meeting in 2016. The pulses they are searching for are nanosecond to one second bursts which,  could only come from technological civilizations.

This PANOSETI (Pulsed All-sky Near-infrared Optical SETI)  uses a most unusual light-collection method that features some 100 compact, wide-viewing Fresnel lenses mounted on two small geodesic domes, and connected to the telescope at the Lick Observatory. I

Jason Wright is an assistant professor of astronomy and astrophysics at Penn State. His reading list is here.

Jason Wright of Penn State was especially impressed by the project, which he said in the future can look at much of the sky at once and was put together with on very limited budget.

Wright, who teaches a course on SETI at Penn State and is a co-author of a recent paper trying to formalize SETI terminology, said his own take-away from the conference is that it may well represent an important and positive moment in the history of technosignatures.

“Without NASA support, the whole field has lacked the normal structure by which astronomy advances,” he said.  “No teaching of the subject, no standard terms, no textbook to formalize findings and understandings.

“The SETI Institute carried us through the dark times, and they did that outside of normal, formal structures. The Institute remains essential, but hopefully that reflex identification will start to change.”

 

Participants in the technosignatures conference in Houston last month, the largest SETI gathering in years.  And this one was sponsored by NASA and put together by the NExSS for Exoplanet Systems Science (NExSS,)  an interdisciplinary agency initiative. (Delia Enriquez)
Facebooktwittergoogle_plusredditpinterestlinkedinmail