Weird Planets

Facebooktwittergoogle_plusredditpinterestlinkedinmail

 

 

Artist rendering of an “eyeball world,” where one side of a tidally locked planet is always hot on the sun-facing side and the back side is frozen cold.  Definitely a tough environment, but  might some of the the planets be habitable at the edges?  Or might winds carry sufficient heat from the front to the back?  (NASA/JPL-Caltech)

The very first planet detected outside our solar system powerfully made clear that our prior understanding of what planets and solar systems could be like was sorely mistaken.

51 Pegasi was a Jupiter-like massive gas planet, but it was burning hot rather than freezing cold because it orbited close to its host star — circling in 4.23 days.  Given the understandings of the time, its existence was essentially impossible. 

Yet there it was, introducing us to what would become a large and growing menagerie of weird planets.

Hot Jupiters, water worlds, Tatooine planets orbiting binary stars, diamond worlds (later downgraded to carbon worlds), seven-planet solar systems with planets that all orbit closer than Mercury orbits our sun.  And this is really only a brief peak at what’s out there — almost 4,000 exoplanets confirmed but billions upon billions more to find and hopefully characterize.

I thought it might be useful — and fun — to take a look at some of the unusual planets found to learn what they tell us about planet formation, solar systems and the cosmos.

 


Artist’s conception of a hot Jupiter, CoRoT-2a. The first planet discovered beyond our solar system was a hot Jupiter similar to this, and this surprised astronomers and led to the view that many hot Jupiters may exist. That hypothesis has been revised as the Kepler Space Telescope found very few distant hot Jupiters and now astronomers estimate that only about 1 percent of planets are hot Jupiters. (NASA/Ames/JPL-Caltech)

 

Let’s start with the seven Trappist-1 planets.  The first three were detected two decades ago, circling a”ultra-cool” red dwarf star a close-by 40 light years away.  Observations via the Hubble Space Telescope led astronomers conclude that two of the planets did not have hydrogen-helium envelopes around them, which means the probability increased that the planets are rocky (rather than gaseous) and could potentially hold water on their surfaces.

Then in 2016 a Belgian team, using  the Transiting Planets and Planetesimals Small Telescope (TRAPPIST) in Chile, found three more planets, and the solar system got named Trappist-1.  The detection of an additional outer planet was announced the next year, and in total three of the seven planets were deemed to be within the host star’s habitable zone — where liquid water could conceivably be present.

So, we have a most interesting 7-planet solar system quite close to us, and not surprisingly it has become the focus of much observation and analysis.

But consider this:  all seven of those planets orbits Trappist-1 at a distance much smaller than from our sun to the first planet, Mercury. The furthest out planets orbits the star in 19 days, while Mercury orbits in 88 days.

 

 

The Trappist-1 solar system, with the transit data used to detect the presence of seven planets, each one blocking the light curve at different locations. (NASA/JPL-Caltech)

 

Given this proximity, then, why are the Trappist-1 planets so interesting, especially in terms of habitability?  Because Trappist-1 puts out but .05 percent as much energy as our sun, and the furthest out planet (though very close to the star by the standards of our solar system) is nonetheless likely to be frozen.

So Trappist-1 a mini-system, with seven tidally-locked (never-rotating) planets that happen to orbit in resonance to each other.  Just because it is so different from our system doesn’t mean it isn’t fascinating, instructive, and even possibly the home of planets that could potentially support life.

And since red dwarf stars are the most common type of star in the Milky way (by lot), red dwarf solar system research is an especially hot field.

So there are mini planets and systems and massive planets in what used to be considered the impossibly wrong place.  And then there are planets with highly eccentric orbits — very different from the largely circular orbits of planets in our system.

The eccentricity of HD20782b superimposed onto our circular-orbiting inner solar system planets. (Stephen Kane)

The most extreme eccentric orbit found so far is HD 20782, measured at an eccentricity of .96. This means that the planet moves in a nearly flattened ellipse, traveling a long path far from its star and then making a fast and furious slingshot around the star at its closest approach. 

Many exoplanets have eccentricities far greater than what’s found in our solar system planets but nothing like this most unusual traveler, which has a path seemingly more like a comet than a planet.

Researchers have concluded that the eccentricity of a planet tends to relate to the number of planets in the system, with many-planeted systems having far more regularly orbiting planets.  (Ours and the Trappist-1 system are examples.)

Unusual planets come in many other categories, such as the chemical makeup of their atmospheres, surfaces and cores.  Most of the mass of stars, planets and living things consists of hydrogen and helium, with oxygen, carbon, iron and nitrogen trailing far behind.

Solid elements are exceptionally rare in the overall scheme of the solar system. Despite being predominant on Earth, they constitute less than 1 percent of the total elements in the solar system, primarily because the amount of gas in the sun and gas giants is so great.  What is generally considered the most important of these precious solid elements is iron, which is inferred to be in the core of almost all terrestrial planet.

The amount of iron or carbon or sulfur or magnesium on or around a planet generally depends on the amount of these “metals” present in the host star, and then in molecular protoplanetary disc remains of the star’s formation.  And this is where some of the outliers, the apparent oddities, come in.

A super-Earth, planet 55 Cancri e, was reported to be the first known planet to have huge layers of diamond, due in part to the high carbon-to-oxygen ratio of its host star. That conclusion has been disputed,  but the planet is nonetheless unusual.  Above is an artist’s concept of the diamond hypothesis. (Haven Giguere/Yale University)

The planet 55 Cancri e, for instance, was dubbed a “diamond planet” in 2012 because the amount of carbon relative to oxygen in the star appeared to be quite high.  Based on this measurement, a team hypothesized that the surface presence of abundant carbon likely created a graphite surface on the scalding super-Earth, with a layer of diamond beneath it created by the great pressures.

“This is our first glimpse of a rocky world with a fundamentally different chemistry from Earth,” lead researcher Nikku Madhusudhan of Yale University said in a statement at the time. “The surface of this planet is likely covered in graphite and diamond rather than water and granite.”

As tends to happen in this early phase of exoplanet characterization, subsequent measurements cast some doubt on the diamond hypothesis.  And in 2016, researchers came up with a different scenario — 55 Cancri e was likely covered in lava.  But because of heavy cloud and dust cover over the planet, a subsequent group raised doubts about the lava explanation. 

But despite all this back and forth, there is a growing consensus that 55 Cancri e has an atmosphere, which is pretty remarkable given its that its “cold” side has temperatures that average of 2,400 to 2,600 degrees Fahrenheit (1,300 to 1,400 Celsius), and the hot side averages 4,200 degrees Fahrenheit (2,300 Celsius). The difference between the hot and cold sides would need to be more extreme if there were no atmosphere.

 

Could super-Earth HD 219134 b be a sapphire planet? (Thibaut Roger/University of Zurich)

And then there’s another super-earth, HD 219134, that late last year was described as a planet potentially featuring vast collections of different precious stones.

To back up for a second, researchers study the formation of planets using theoretical models and compare their results with data from observations. It is known that during their formation, stars such as the sun were surrounded by a disc of gas and dust in which planets were born. Rocky planets like the Earth were formed out of the solid bodies left over when the protoplanetary gas disc cooled and dispersed.

Unlike the Earth however, HD 219134 most likely does not have a massive core of iron — a conclusion flowing from measurements of its density.  Instead, through modeling of formation scenarios for a scalding super-Earth close to its host star, the researchers conclude the planet is likely to be rich in calcium and aluminum, along with magnesium and silicon.

This chemical composition would allow the existence of large quantities of aluminum oxides. On Earth, crystalline aluminum oxide forms the mineral corundum. If the aluminum oxide contains traces of iron, titanium, cobalt or chromium, it will form the noble varieties of corundum, gemstones like the blue sapphire and the red ruby.

“Perhaps it shimmers red to blue like rubies and sapphires, because these gemstones are aluminum oxides which are common on the exoplanet,” said Caroline Dorn, astrophysicist at the Institute for Computational Science of the University of Zurich.

 

 

A variation on the “eyeball planet” is a water world where the star-facing side is able to maintain a liquid-water ocean, while the rest of the surface is ice. (eburacum45/DeviantArt)

 

Super-Earths, which are defined as having a size between that of Earth and Neptune, are also inferred to be the most likely to be water worlds.

At a Goldschmidt Conference in Boston last year, a study was presented that suggests that some super-Earth exoplanets are likely extremely wet with water – much more so than Earth. Astronomers found more specifically that exoplanets which are between two and four times the size of Earth are likely to have water as a dominant component.  Most are thought to be rocky and to have atmospheres, and now it seems that many have ocean, as well.

The new findings are based on data from the Kepler Space Telescope and the Gaia mission, which show that many of the already known planets of this type (out of more than 4,000 exoplanets confirmed so far) could contain as much as 50 percent water. That upper limit is an enormous amount, compared to 0.02 percent of the water content of Earth.

This potentially wide distribution of water worlds is perhaps not so surprising given conditions in our solar system, where Earth is wet, Venus and Mars were once wet, Neptune and Uranus are ice giants and moons such as Europa and Enceladus as global oceans beneath their crusts of ice.

 

Might this be the strangest planet of all? (NASA)

 

As is apparent with the planetary types described so far, whether a planet is typical or atypical is very much up in the air.  What is atypical this year may be found to be common in the days ahead.

The Kepler mission concluded that small, terrestrial planets are likely more common than gas giants, but our technology doesn’t let us identify and characterize many of those smaller, Earth-sized planets.

Many of the planets discovered so far are quite close to their host stars and thus are scalding hot. Planets orbiting red dwarf stars are an exception, but if you’re looking for habitable planets — and many astronomers are — then red dwarf planets come with other problems in terms of habitability.  They are usually tidally locked and they start their days bathed in very high-energy radiation that could stertilize the surface for all time.

A prime goal of the Kepler mission had been to find a planet close enough in character to Earth to be considered a twin.  While they have some terrestrial candidates that could be habitable, no twin was found.  This may be a function of lacking the necessary technology, or it’s certainly possible (if unlikely) that no Earth twins are out there.  Or at least none with quite our collection of conditions favorable to habitability and life. 

With this in mind, my own current candidate for an especially unusual planet is, well, our own.   Planet-hunting over the past almost quarter-century leads to that conclusion — for now, at least.

And it may be that solar systems like ours are highly unusual, too.  Pretty surprising, given that not long ago it was considered the norm.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Kepler Space Telescope Mission Is Ending But Its Legacy Will Keep Growing.

Facebooktwittergoogle_plusredditpinterestlinkedinmail
An illustration of the Kepler Space Telescope, which is on its very last legs.  As of October 2018, the planet-hunting spacecraft has been in space for nearly a decade. (NASA via AP)

 

The Kepler Space Telescope is dead.  Long live the Kepler.

NASA officials announced on Tuesday that the pioneering exoplanet survey telescope — which had led to the identification of almost 2,700 exoplanets — had finally reached its end, having essentially run out of fuel.  This is after nine years of observing, after a malfunctioning steering system required a complex fix and change of plants, and after the hydrazine fuel levels reached empty.

While the sheer number of exoplanets discovered is impressive the telescope did substantially more:  it proved once and for all that the galaxy is filled with planets orbiting distant stars.  Before Kepler this was speculated, but now it is firmly established thanks to the Kepler run.

It also provided data for thousands of papers exploring the logic and characteristics of exoplanets.  And that’s why the Kepler will indeed live long in the world of space science.

“As NASA’s first planet-hunting mission, Kepler has wildly exceeded all our expectations and paved the way for our exploration and search for life in the solar system and beyond,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington.

“Not only did it show us how many planets could be out there, it sparked an entirely new and robust field of research that has taken the science community by storm. Its discoveries have shed a new light on our place in the universe, and illuminated the tantalizing mysteries and possibilities among the stars.”

 

 


The Kepler Space Telescope was focused on hunting for planets in this patch of the Milky Way. After two of its four spinning reaction wheels failed, it could no longer remain steady enough to stare that those distant stars but was reconfigured to look elsewhere and at a different angle for the K2 mission. (Carter Roberts/NASA)

 

Kepler was initially the unlikely brainchild of William Borucki, its founding principal investigator who is now retired from NASA’s Ames Research Center in California’s Silicon Valley.

When he began thinking of designing and proposing a space telescope that could potentially tell us how common distant exoplanets were — and especially smaller terrestrial exoplanets like Earth – the science of extra solar planets was at a very different stage.

William Borucki, originally the main champion for the Kepler idea and later the principal investigator of the mission. His work at NASA went back to the Apollo days. (NASA)

“When we started conceiving this mission 35 years ago we didn’t know of a single planet outside our solar system,” Borucki said.  “Now that we know planets are everywhere, Kepler has set us on a new course that’s full of promise for future generations to explore our galaxy.”

The space telescope was launched in 2009.  While Kepler did not find the first exoplanets — that required the work of astronomers using a different technique of observing based on the “wobble” of stars caused by orbiting planets — it did change the exoplanet paradigm substantially.

Not only did it prove that exoplanets are common, it found that planets outnumber stars in our galaxy (which has hundreds of billions of those stars.)

In addition it found that small, terrestrial-size planets are common as well, with some 20 to 50 percent of stars likely to have planets of that size and type.  And what menagerie of planets it found out there.

Astrophysicist Natalie Batalha was the Kepler project and mission scientist for a decade. She left NASA recently for the University of California at Santa Cruz “to carry on the Kepler legacy” by creating an interdisciplinary center for the study of planetary habitability.

Among the greatest surprises:  The Kepler mission provided data showing that the most common sized planets in the galaxy fall somewhere between Earth and Neptune, a type of planet that isn’t present in our solar system.

It found solar systems of all sizes as well, including some with many planets (as many as eight) orbiting close to their host star.

The discovery of these compact systems, generally orbiting a red dwarf star, raised questions about how solar systems form: Are these planets “born” close to their parent star, or do they form farther out and migrate in?

So far, more than 2,500 peer-reviewed papers have been published using Kepler data, with substantial amounts of that data still unmined.

Natalie Batalha was the project and mission scientist for Kepler for much of its run, and I asked her about its legacy.

“When I think of Kepler’s influence across all of astrophysics, I’m amazed at what such a simple experiment accomplished,” she wrote in an email. “You’d be hard-pressed to come up with a more boring mandate — to unblinkingly measure the brightnesses of the same stars for years on end. No beautiful images. No fancy spectra. No landscapes. Just dots in a scatter plot.

“And yet time-domain astronomy exploded. We’d never looked at the Universe quite this way before. We saw lava worlds and water worlds and disintegrating planets and heart-beat stars and supernova shock waves and the spinning cores of stars and planets the age of the galaxy itself… all from those dots.”

 

The Kepler-62 system is put one of many solar systems detected by the space telescope. The planets within the green discs are in the habitable zones of the stars — where water could be liquid at times. (NASA)

 

While Kepler provided remarkable answers to questions about the overall planetary makeup of our galaxy, it did not identify smaller planets that will be directly imaged, the evolving gold standard for characterizing exoplanets.  The 150,000 stars that the telescope was observing were very distant, in the range of a few hundred to a few thousand light-years away. One light year is about 6 trillion (6,000,000,000,000) miles.

Nonetheless, Kepler was able to detect  the presence of a handful of Earth-sized planets in the habitable zones of their stars.  The Kepler-62 system held one of them, and it is 1200 light-years away.  In contrast, the four Earth-sized planets in the habitable zone of the much-studied Trappist-1 system are 39 light-years away.

Kepler made its observations using the the transit technique, which looks for tiny dips in the amount of light coming from a star caused by the presence of a planet passing in front of the star.  While the inference that exoplanets are ubiquitous came from Kepler results, the telescope was actually observing but a small bit of the sky.  It has been estimated that it would require around 400 space telescopes like Kepler to cover the whole sky.

What’s more, only planets whose orbits are seen edge-on from Earth can be detected via the transit method, and that rules out a vast number of exoplanets.

The bulk of the stars that were selected for close Kepler observation were more or less sun-like, but a sampling of other stars occurred as well. One of the most important factors was brightness. Detecting minuscule changes in brightness caused by transiting planet is impossible if the star is too dim.

 

The artist’s concept depicts Kepler-186f, the first validated Earth-size planet to orbit a distant star in the habitable zone. (NASA Ames/SETI Institute/JPL-Caltech)

 

Four years into the mission, after the primary mission objectives had been met, mechanical failures temporarily halted observations. The mission team was able to devise a fix, switching the spacecraft’s field of view roughly every three months. This enabled an extended mission for the spacecraft, dubbed K2, which lasted as long as the first mission and bumped Kepler’s count of surveyed stars up to more than 500,000.

But it was inevitable that the mission would come to an end sooner rather than later because of that dwindling fuel supply, needed to keep the telescope properly pointed.

Kepler cannot be refueled because NASA decided to place the telescope in an orbit around the sun that is well beyond the influence of the Earth and moon — to simplify operations and ensure an extremely quiet, stable environment for scientific observations.  So Kepler was beyond the reach of any refueling vessel.  The Kepler team compensated by flying considerably more fuel than was necessary to meet the mission objectives.

The video below explains what will happen to the Kepler capsule once it is decommissioned.  But a NASA release explains that the final commands “will be to turn off the spacecraft transmitters and disable the onboard fault protection that would turn them back on. While the spacecraft is a long way from Earth and requires enormous antennas to communicate with it, it is good practice to turn off transmitters when they are no longer being used, and not pollute the airwaves with potential interference.”

 

 

And so Kepler will actually continue orbiting for many decades, just as its legacy will continue long after operations cease.

Kepler’s follow-on exoplanet surveyor — the Transiting Exoplanet Survey Satellite or TESS — was launched this year and has begun sending back data.  Its primary mission objective is to survey the brightest stars near the Earth for transiting exoplanets. The TESS satellite uses an array of wide-field cameras to survey some 85% of the sky, and is planned to last for two years.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Water Worlds, Aquaplanets and Habitability

Facebooktwittergoogle_plusredditpinterestlinkedinmail
This artist rendering may show a water world — without any land — or an aquaplanet with lots of more shallow water around a rocky planet. (NASA)

 

The more exoplanet scientists learn about the billions and billions of celestial bodies out there, the more the question of unusual planets — those with characteristics quite different from those in our solar system — has come into play.

Hot Jupiters, super-Earths, planets orbiting much smaller red dwarf stars — they are all grist for the exoplanet mill, for scientists trying to understand the planetary world that has exploded with possibilities and puzzles over the past two decades.

Another important category of planets unlike those we know are the loosely called “water worlds” (with very deep oceans) and their “aquaplanet” cousins (with a covering of water and continents) but orbiting stars very much unlike our sun.

Two recent papers address the central question of habitability in terms of these kind of planets — one with oceans and ice hundreds of miles deep, and one particular and compelling planet (Proxima Centauri b, the exoplanet closest to us) hypothesized to have water on its surface as it orbits a red dwarf star.

The question the papers address is whether these watery worlds might be habitable.  The conclusions are based on modelling rather than observations, and they are both compelling and surprising.

In both cases — a planet with liquid H20 and ice many miles down, and another that probably faces its red dwarf sun all or most of the time — the answers from modelers is that yes, the planets could be habitable.   That is very different from saying they are or even might be inhabited.  Rather,  the conclusions are based on computer models that take into account myriad conditions and come out with simulations about what kind of planets they might be.

This finding of potential watery-world habitability is no small matter because predictions of how planets form point to an abundance of water and ice in the planetesimals that grow into planets.

As described by Eric Ford, co-author of one of the papers and a professor of astrophysics at Pennsylvania State University, “Many scientists anticipate that planets with oceans much deeper than Earths could be a common outcome of planet formation. Indeed, one of the puzzling properties of Earth is that it has oceans that are just skin deep” compared to the radius of the planet.

“While some planets very close to their star might loose all their water, it would take a delicate balancing act to remove many ocean’s worth of water and to leave a planet with oceans as shallow as those on Earth.”

An interesting place to start.

 

Artist’s conception of a planet covered with a global ocean. A new study finds that these wate rworlds could maintain stable climates and perhaps sustain life under certain conditions. (ESO/M. Kornmesser)

 

It should first be said that many scientists are dubious that extreme water worlds can support life or can support detectable life.  My colleague Elizabeth Tasker wrote a column — Can You Overwater a Planet? — focused on this view last year.

The first of the two new exoplanets/ocean papers involves planets with very deep oceans. Written by Edwin Kite of the University of Chicago and Ford of Penn State, the paper in the Astrophysical Journal concludes that even a planet with such super deep oceans could — under certain conditions — provide habitable conditions.

This finding is at odds with previous simulations, and Kite says that is part of its significance. The scientific community has largely assumed that planets covered in a deep ocean would not support the cycling of minerals and gases that keeps the climate stable on Earth, and thus wouldn’t be friendly to life.

But the Kite and Ford study found that ocean planets (with 10 to 1000 times as much water as Earth) could remain habitable much longer than previously assumed. The authors performed more than a thousand simulations to reach that conclusion.

Eric Ford is a professor astrophysics at Penn State and a specialist in planet formation. (Penn State)

“This really pushes back against the idea you need an Earth clone—that is, a planet with some land and a shallow ocean,” said Edwin Kite, assistant professor of geophysical sciences at the University of Chicago and lead author of the study.

Edwin Kite is an assistant professor of planetary sciences at the University of Chicago. (Univ. of Chicago)

Because life needs an extended period to evolve — and because the light and heat on planets can change as their stars age — scientists usually look for planets that have both some water and some way to keep their climates stable over time. The method for achieving this steady state that we know is, of course, how it works on Earth. Over eons, our planet has cooled itself by drawing down atmospheric greenhouse gases into minerals and warms itself up by releasing them via volcanoes.

But this model doesn’t work on a water world, with deep water covering the rock and suppressing volcanoes.

Kite and Ford wanted to know if there was another way to achieve a balance. They set up a simulation with thousands of randomly generated planets, and tracked the evolution of their climates over billions of years.

“The surprise was that many of them stay stable for more than a billion years, just by luck of the draw,” Kite said. “Our best guess is that it’s on the order of 10 percent of them.”

These planets sit in the right location around their stars. They happened to have the right amount of carbon present, and they don’t have too many minerals and elements from the crust dissolved in the oceans that would pull carbon out of the atmosphere. They have enough water from the start, and they cycle carbon between the atmosphere and ocean only, which in the right concentrations is sufficient to keep things stable.

None of this means that such a planet exists — our ability to detect oceans worlds is in its infancy.  The issue is rather that Kite and Ford conclude that a deep ocean planet could potentially be habitable if other conditions were met.

 

Artist rendering of Proxima Centauri b orbiting its red dwarf host star. (ESO/L.Calçada/Nick Risinger)

 

Anthony Del Genio and his team of modelers at NASA’s Goddard Institute for Space Studies in New York used their state-of-the-art climate simulations to look at another aspect of the exoplanet water story, and they chose Proxima Centauri b as their subject.  The roughly Earth-sized planet was discovered in 2016 and is the closest exoplanet to Earth.

Scientists determined early on that it is a rocky (as opposed to gaseous) planet and that it orbits its host star every 11 days.  If that star was as powerful as our sun, there would be no talk of possible habitability on close-in Proxima b.  But the star is a red dwarf and puts out only a fraction of the radiation coming from a host star like our sun.

Still, the case for habitability on Proxima b was initially considered to be weak, in part because the planet is tidally locked by its closeness to the host star.  In other words, it would most likely not spin to create days and nights as it orbits, but rather would have a sun-facing side and a space-facing side — making the temperature differences great.

Our ability to characterize a small planet like Proxima b remains very limited, and so it is unknown whether the planet has water or whether it has an atmosphere.  So those two essential components of the habitability question are missing.

But Del Genio’s team decided to model the dynamics of Proxima b with a presumed ocean, though not one that is many miles deep.  In Earth science parlance, what Del Genio referred to as an “aquaplanet.” And using their sophisticated models, they would simulate “dynamic” oceans with currents like our own, rather than the stationary oceans modeled earlier on exoplanets.

And rather to their surprise, they reported in the journal Astrobiology that their model of ocean behavior showed that the planet would not have only small areas of potential habitability — the earlier proposed habitable “eyeball” scenario — but rather much of the planet could be habitable.  That could include some of the normally space-facing side.

 

One type of possible water world is an “eyeball” planet, where the star-facing side is able to maintain a liquid-water ocean, while the rest of the surface is ice. (Image via eburacum45/DeviantArt)

 

“Our group said let’s hook up an atmosphere to a dynamic ocean rather than a static one,” Del Genio said.  “That way you get ocean currents like those on our coasts, and they move water of different temperatures around.

“If you have a real and dynamic ocean in your model, then we found that the eyeball goes away.  Usually the currents go west to east and they carry warmer water even to the night side.”

Anthony Del Genio, leader of NASA’s GISS team that  uses cutting edge Earth climate models to better understand conditions on exoplanets.

So using this more sophisticated model, not insignificant areas of Proxima b, or any other planet like it orbiting a red dwarf star, could be habitable, they concluded.  But again, that is assuming some pretty big “ifs” — the presence of an ocean and an atmosphere.

And then the team added variables such as a thick nitrogen and carbon atmosphere or a thin one, fresh water or salty water, a planet that is firmly locked and never rotating, or one that rotates a modest amount — giving the dark side some light.  Del Genio said that with all these added factors, a substantial portion of the surface of Proxima b, or a planet like it, would have liquid water and potentially habitable conditions.

This focus on watery worlds — including those that would be extreme compared with Earth today — makes sense in the context of the history of Earth.

While there is no direct evidence of this, many scientists think that the very early Earth was covered for a period of time with water with little or no land.

And then after land appeared, it still took some three billion years for any life form — bacteria, early planets — to colonize the land, and another half billion years for animals to come ashore.  Yet the oceans were long habitable and inhabited, as early a 3.8 billion years ago.

So until astronomy and exoplanet science develop the needed instruments and scientists acquire the observed knowledge of conditions on water worlds, progress will come largely from modelling that tells us what might be possible.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

A New Frontier for Exoplanet Hunting

Facebooktwittergoogle_plusredditpinterestlinkedinmail
The spectrum from the newly-assembled EXtreme PREcision Spectrometer (EXPRES)  shines on Yale astronomy professor Debra Fischer, who is principal investigator of the project. The stated goal of EXPRES is to find many Earth-size planets via the radial velocity method — something that has never been done. (Ryan Blackman/Yale)

 

The first exoplanets were all found using the radial velocity method of measuring the “wobble” of a star — movement caused by the gravitational pull of an orbiting planet.

Radial velocity has been great for detecting large exoplanets relatively close to our solar system, for assessing their mass and for finding out how long it takes for the planet to orbit its host star.

But so far the technique has not been able to identify and confirm many Earth-sized planets, a primary goal of much planet hunting.  The wobble caused by the presence of a planet that size has been too faint to be detected by current radial velocity instruments and techniques.

However, a new generation of instruments is coming on line with the goal of bringing the radial velocity technique into the small planet search.  To do that, the new instruments, together with their telescopes. must be able to detect a sun wobble of 10 to 20 centimeters per second.  That’s quite an improvement on the current detection limit of about one meter per second.

At least three of these ultra high precision spectrographs (or sometimes called spectrometers) are now being developed or deployed.  The European Southern Observatory’s ESPRESSO instrument has begun work in Chile; Pennsylvania State University’s NEID spectrograph (with NASA funding) is in development for installation at the Kitt Peak National Observatory in Arizona; and the just-deployed EXPRES spectrograph put together by a team led by Yale University astronomers (with National Science Foundation support) is in place at the Lowell Observatory outside of Flagstaff, Arizona.

The principal investigator of EXPRES, Debra Fischer, attended the recent University of Cambridge Exoplanets2 conference with some of her team, and there I had the opportunity to talk with them. We discussed the decade-long history of the instrument, how and why Fischer thinks it can break that 1-meter-per-second barrier, and what it took to get it attached and working.

 

This animation shows how astronomers use very precise spectrographs to find exoplanets. As the planet orbits its gravitational pull causes the parent star to move back and forth. This tiny radial motion shifts the observed spectrum of the star by a correspondingly small amount because of the Doppler shift. With super-sensitive spectrographs the shifts can be measured and used to infer details of a planet’s mass and orbit. ESO/L. Calçada)

 

One of the earliest and most difficult obstacles to the development of EXPRES, Fischer told me, was that many in the astronomy community did not believe it could work.

Their view is that precision below that one meter per second of host star movement cannot be measured accurately.  Stars have flares, sunspots and a generally constant churning, and many argue that the turbulent nature of stars creates too much “noise” for a precise measurement below that one-meter-per-second level.

Yet European scientists were moving ahead with their ESPRESSO ultra high precision instrument aiming for that 10-centimeter-per-second mark, and they had a proven record of accomplishing what they set out to do with spectrographs.

In addition to the definite competiti0n going on, Fisher also felt that radial velocity astronomers needed to make that leap to measuring small planets “to stay in the game” over the long haul.

She arrived at Yale in 2009 and led an effort to build a spectrograph so stable and precise that it could find an Earth-like planet.  To make clear that goal, the instrument is at the center of a project called “100 Earths.”

Building on experience gained from developing two earlier spectrographs, Fischer and colleagues began the difficult and complicated process of getting backers for EXPRES, of finding a telescope observatory that would house it (The Discovery Channel Telescope at Lowell) and in the end adapting the instrument to the telescope.

And now comes the actual hard part:  finding those Earth-like planets.

As Fischer described it:  “We know from {the Kepler Telescope mission} that most stars have small rocky planets orbiting them.  But Kepler looked at stars very far away, and we’ll be looking at stars much, much closer to us.”

Nonetheless, those small planets will still be extremely difficult to detect due to all that activity on the host sun.

 

EXPRES in its vacuum-sealed chamber at the Lowell Observatory. will help detect Earth-sized planets in neighboring solar systems. (Ryan Blackman/Yale)

 

 

The 4.3 meter Discovery Channel Telescope in the Lowell Observatory in Arizona.  The photons collected by the telescope are delivered via optical fiber to the EXPRES instrument. (Boston University)

 

Spectrographs such as EXPRES are instruments astronomers use to study light emitted by planets, stars, and galaxies.

They are connected to either a ground-based or orbital telescope and they stretch out or split a beam of light into a spectrum of frequencies.  That spectrum is then analyzed to determine an object’s speed, direction, chemical composition, or mass.  With planets, the work involves determining (via the Doppler shift seen in the spectrum) whether and how much a sun is moving to and away from Earth due to the pull of a planet.

As Fisher and EXPRES postdoctoral fellow John Brewer explained it, the signal (noise) coming from the turbulence of the star is detectably different from the signal made by the wobble of a star due to the presence of an orbiting planet.

While these differences — imprinted in the spectrum captured by the spectrograph — have been known for some time, current spectrographs haven’t had sufficient resolving power to actually detect the difference.

If all works as planned for the EXPRES, Espresso and NEID spectrographs, they will have that necessary resolving power and so can, in effect, filter out the noise from the sun and identify what can only come from a planet-caused wobble.  If they succeed, they provide a major new pathway to  for astronomers to search for Earth-sized worlds.

“This is my dream machine, the one I always wanted to build,” Fischer said. “I had a belief that if we went to higher resolution, we could disentangle (the stellar noise from the planet-caused wobble.)

“I could still be wrong, but I definitely think that trying was the right choice to make.”

 

This image shows spectral data from the first light last December of the ESPRESSO instrument on ESO’s Very Large Telescope in Chile. The light from a star has been dispersed into its component colors. This view has been colorised to indicate how the wavelengths change across the image, but these are not exactly the colors that would be seen visually. (ESO/ESPRESSO)

 

While Fischer and others have very high hopes for EXPRES, it is not the sort of  big ticket project that is common in astronomy.  Instead, it was developed and built primarily with a $6 million grant from the National Science Foundation.

It was completed on schedule by the Yale team, though the actual delivering of EXPRES to Arizona and connecting it to the telescope turned out to be a combination of hair-raising and edifying.

Twice, she said, she drove from New Haven to Flagstaff with parts of the instrument; each trip in a Penske rental truck and with her son Ben helping out.

And then when the instrumentation was in process late last year, Fischer and her team learned that funds for the scientists and engineers working on that process had come to an end.

Francesco Pepe of the University of Geneva. He is the principal scientist for the ESPRESSO instrument and gave essential aid to the EXPRES team when they needed it most.

She was desperate, and sent a long-shot email to Francesco Pepe of University of Geneva, the lead scientist and wizard builder of several European spectrographs, including ESPRESSO. In theory, he and his instrument — which went into operation late last year at the ESO Very Large Telescope in Chile — will be competing with EXPRES for discoveries and acknowledgement.

Nonetheless, Pepe heard Fischer out and understood the predicament she was in.  ESPRESSO had been installed and so he was able to contact an associate who freed up two instrumentation specialists who flew to Flagstaff to finish the work.  It was, Fischer said, an act of collegial generosity and scientific largesse that she will never forget.

Fischer is at the Lowell observatory now, using the Arizona monsoon as a time to clean up many details before the team returns to full-time observing.  She writes about her days in an EXPRES blog.  Earlier, in March after the instrumentation had been completed and observing had commenced, she wrote this:

“Years of work went into EXPRES and as I look at this instrument, I am surprised that I ever had the audacity to start this project. The moment of truth starts now. It will take us a few more months of collecting and analyzing data to know if we made the right design decisions and I feel both humbled and hopeful. I’m proud of the fact that our design decisions were driven by evidence gleaned from many years of experience. But did I forget anything?”

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Architecture of Solar Systems

Facebooktwittergoogle_plusredditpinterestlinkedinmail
The architecture of planetary systems is an increasingly important factor to exoplanet scientists.  This illustration shows the Kepler-11 system where the planets are all roughly the same size and their orbits spaced at roughly the same distances from each other.  The the planets are, in the view of scientists involved with the study, “peas in a pod.” (NASA)

Before the discovery of the first exoplanet that orbits a star like ours, 51 Pegasi b, the assumption of solar system scientists was that others planetary systems that might exist were likely to be like ours.  Small rocky planets in the inner solar system, big gas giants like Jupiter, Saturn and Neptune beyond and, back then, Pluto bringing up the rear

But 51 Peg b broke every solar system rule imaginable.  It was a giant and hot Jupiter-size planet, and it was so close to its star that it orbited in a little over four days.  Our Jupiter takes twelve years to complete an orbit.

This was the “everything we knew about solar systems is wrong” period, and twenty years later thinking about the nature and logic of solar system architecture remains very much in flux.

But progress is being made, even if the results are sometimes quite confounding. The umbrella idea is no longer that solar, or planetary, systems are pretty much like ours, but rather that the galaxy is filled with a wild diversity of both planets and planetary systems.

Detecting and trying to understand planetary systems is today an important focus 0f  exoplanet study, especially now that the Kepler Space Telescope mission has made clear that multi-planet systems are common.

As of early July, 632 multi planet systems have been detected and 2,841 stars are known to have at least one exoplanets.  Many of those stars with a singular planet may well have others yet to be found.

An intriguing newcomer to the diversity story came recently from University of Montreal astronomer Lauren Weiss, who with colleagues expanded on and studied some collected Kepler data.

What she found has been deemed the “peas in a pod” addition to the solar system menagerie.

Weiss was working with the California-Kepler Survey, which included a team of scientists pouring over, elaborating on and looking for patterns in, among other things, solar system architectures.

Weiss is part of the California-Kepler Survey team, which used the Keck Observatory to obtain high-resolution spectra of 1305 stars hosting 2025 transiting planets originally discovered by Kepler.

From these spectra, they measured precise sizes of the stars and their planets, looking for patterns in, among other things, solar system architectures.  They focused on 909 planets belonging to 355 multi-planet systems. By improving the measurements of the radii of the stars, Weiss said, they were able to recalculate the radii of all the planets.

So Weiss studied hundreds systems and did find a number of surprising, unexpected patterns.

In many systems, the planets were all roughly the same size as the planet in orbit next to them. (No tiny-Mars-to-gigantic-Jupiter transitions.)  This kind of planetary architecture was not found everywhere but it was quite common — more common than random planet sizing would predict.

“The effect showed up with smaller planets and larger ones,” Weiss told me during last week’s University of Cambridge Exoplanets2 conference. “The planets in each system seemed to know about the sizes of the neighbors,” and for thus far unknown reasons maintained those similar sizes.

What’s more, Weiss and her colleagues found that the orbits of these “planets in a pod” were generally an equal distance apart in “multi” of three planets or more. In other words, the distance between the orbits of planet A and planet B was often the same distance as between the orbits of planet B and planet C.

Lauren Weiss at the W.M Keck Observatory.

So not only were many of the planets almost the same size, but they were in orbits spaced at distances from each other that were once again much more similar than a random distribution would predict. In the Astronomical Journal article where she and her colleagues described the phenomena, they also found a “wall” defining how close together the planets orbited.

The architecture of these systems, Weiss said, reflected the shapes and sizes of the protoplanetary in which they were formed.  And it would appear that the planets had not been disrupted by larger planets that can dramatically change the structure of a solar system — as happened with Jupiter in our own.

But while those factors explain some of what was found, Weiss said other astrophysical dynamics needed to be at play as well to produce this common architecture.  The stability of the system, for instance, would be compromised if the orbits were closer than that “wall,” as the gravitational pull of the planets would send them into orbits that would ultimately result in collisions.

The improved spectra of the Kepler planets were obtained from 2011 to 2015, and the targets are mostly located between 1,000 and 4,000 light-years away from Earth.

The architectures of California-Kepler study multi-planet systems with four planets or more.  Each row corresponds to the planets around one and the circles represent the radii of planets in the system.  Note how many have lines of planets that are roughly the same size. (Lauren Weiss, The Astronomical Journal.)

Planetary system architecture was a significant topic at the Cambridge Exoplanets2 conference.  While the detection of individual exoplanets remains important in the field, it is often treated as a precursor to the ultimate detection of systems with more planets. 

The TRAPPIST-1 system, discovered in 2015 by a Belgian team, is probably the most studied and significant of those discovered so far.

The ultra-cool dwarf star hosts seven Earth-sized, temperate exoplanets in or near the “habitable zone.” As described by one of those responsible for the discovery, Brice-Olivier Demory of the Center for Space and Habitability University of Bern, the system “represents a unique setting to study the formation and evolution of terrestrial planets that formed in the same protoplanetary disk.”

The Trappist-1 architecture features not only the seven rocky planets, but also a resonance system whereby the planets orbits at paces directly related to the planets nearby them.  In other words, one planet may make two orbits in exactly the time that it takes for the next planet to make three orbits.

All the Trappist-1 planets are in resonance to another system planet, though they are not all in resonance to each other.

The animation above from the NASA Ames Research Center shows the orbits of the Trappist-1 system.  The planets pass so close to one another that gravitational interactions are significant, and to remain stable the orbital periods are nearly resonant. In the time the innermost planet completes eight orbits, the second, third, and fourth planets complete five, three, and two respectively.

The system is very flat and compact. All seven of TRAPPIST-1’s planets orbit much closer to their star than Mercury orbits the sun. Except for TRAPPIST-1b, they orbit farther than the Galilean moons — three of which are also in resonance around Jupiter.

The distance between the orbits of TRAPPIST-1b and TRAPPIST-1c is only 1.6 times the distance between the Earth and the Moon.  A year on the closest planet passes in only 1.5 Earth days, while the seventh planet’s year passes in only 18.8 days.

Given the packed nature of the system, the planets have to be in particular orbits that keep them from colliding.  But they also have to be in orbits that ensure that all or most of the planets aren’t on the same side of the star, creating a severe imbalance that would result in chaos.

“The Trappist-1 system has entered into a zone of stability,” Demory told me, also at the Exoplanets2 conference.  “We think of it as a Darwinian effect — the system survives because of that stability created through the resonance.  Without the stability, it would die. ”

He said the Trappist-1 planets were most likely formed away from their star and migrated inward.  The system had rather a long time to form, between seven and eight billion years.

The nature of some of the systems now being discovered brings to mind that early reaction to the detection of 51 Pegasi b, the world’s first known exoplanet.

The prevailing consensus that extra-solar systems would likely be similar to ours was turned on its head by the giant planet’s closeness to its host star.  For a time many astronomers thought that hot Jupiter planets would be found to be common.

But 20 years later they know that hot Jupiters — and the planetary architecture they create — are rather unusual, like the architecture of our own solar system.

With each new discovery of a planetary system, the understanding grows that while solar systems are governed by astrophysical forces, they nonetheless come in all sizes and shapes. Diversity is what binds them together.

Facebooktwittergoogle_plusredditpinterestlinkedinmail