The Kepler Space Telescope Mission Is Ending But Its Legacy Will Keep Growing.

Facebooktwittergoogle_plusredditpinterestlinkedinmail
An illustration of the Kepler Space Telescope, which is on its very last legs.  As of October 2018, the planet-hunting spacecraft has been in space for nearly a decade. (NASA via AP)

 

The Kepler Space Telescope is dead.  Long live the Kepler.

NASA officials announced on Tuesday that the pioneering exoplanet survey telescope — which had led to the identification of almost 2,700 exoplanets — had finally reached its end, having essentially run out of fuel.  This is after nine years of observing, after a malfunctioning steering system required a complex fix and change of plants, and after the hydrazine fuel levels reached empty.

While the sheer number of exoplanets discovered is impressive the telescope did substantially more:  it proved once and for all that the galaxy is filled with planets orbiting distant stars.  Before Kepler this was speculated, but now it is firmly established thanks to the Kepler run.

It also provided data for thousands of papers exploring the logic and characteristics of exoplanets.  And that’s why the Kepler will indeed live long in the world of space science.

“As NASA’s first planet-hunting mission, Kepler has wildly exceeded all our expectations and paved the way for our exploration and search for life in the solar system and beyond,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington.

“Not only did it show us how many planets could be out there, it sparked an entirely new and robust field of research that has taken the science community by storm. Its discoveries have shed a new light on our place in the universe, and illuminated the tantalizing mysteries and possibilities among the stars.”

 

 


The Kepler Space Telescope was focused on hunting for planets in this patch of the Milky Way. After two of its four spinning reaction wheels failed, it could no longer remain steady enough to stare that those distant stars but was reconfigured to look elsewhere and at a different angle for the K2 mission. (Carter Roberts/NASA)

 

Kepler was initially the unlikely brainchild of William Borucki, its founding principal investigator who is now retired from NASA’s Ames Research Center in California’s Silicon Valley.

When he began thinking of designing and proposing a space telescope that could potentially tell us how common distant exoplanets were — and especially smaller terrestrial exoplanets like Earth – the science of extra solar planets was at a very different stage.

William Borucki, originally the main champion for the Kepler idea and later the principal investigator of the mission. His work at NASA went back to the Apollo days. (NASA)

“When we started conceiving this mission 35 years ago we didn’t know of a single planet outside our solar system,” Borucki said.  “Now that we know planets are everywhere, Kepler has set us on a new course that’s full of promise for future generations to explore our galaxy.”

The space telescope was launched in 2009.  While Kepler did not find the first exoplanets — that required the work of astronomers using a different technique of observing based on the “wobble” of stars caused by orbiting planets — it did change the exoplanet paradigm substantially.

Not only did it prove that exoplanets are common, it found that planets outnumber stars in our galaxy (which has hundreds of billions of those stars.)

In addition it found that small, terrestrial-size planets are common as well, with some 20 to 50 percent of stars likely to have planets of that size and type.  And what menagerie of planets it found out there.

Astrophysicist Natalie Batalha was the Kepler project and mission scientist for a decade. She left NASA recently for the University of California at Santa Cruz “to carry on the Kepler legacy” by creating an interdisciplinary center for the study of planetary habitability.

Among the greatest surprises:  The Kepler mission provided data showing that the most common sized planets in the galaxy fall somewhere between Earth and Neptune, a type of planet that isn’t present in our solar system.

It found solar systems of all sizes as well, including some with many planets (as many as eight) orbiting close to their host star.

The discovery of these compact systems, generally orbiting a red dwarf star, raised questions about how solar systems form: Are these planets “born” close to their parent star, or do they form farther out and migrate in?

So far, more than 2,500 peer-reviewed papers have been published using Kepler data, with substantial amounts of that data still unmined.

Natalie Batalha was the project and mission scientist for Kepler for much of its run, and I asked her about its legacy.

“When I think of Kepler’s influence across all of astrophysics, I’m amazed at what such a simple experiment accomplished,” she wrote in an email. “You’d be hard-pressed to come up with a more boring mandate — to unblinkingly measure the brightnesses of the same stars for years on end. No beautiful images. No fancy spectra. No landscapes. Just dots in a scatter plot.

“And yet time-domain astronomy exploded. We’d never looked at the Universe quite this way before. We saw lava worlds and water worlds and disintegrating planets and heart-beat stars and supernova shock waves and the spinning cores of stars and planets the age of the galaxy itself… all from those dots.”

 

The Kepler-62 system is put one of many solar systems detected by the space telescope. The planets within the green discs are in the habitable zones of the stars — where water could be liquid at times. (NASA)

 

While Kepler provided remarkable answers to questions about the overall planetary makeup of our galaxy, it did not identify smaller planets that will be directly imaged, the evolving gold standard for characterizing exoplanets.  The 150,000 stars that the telescope was observing were very distant, in the range of a few hundred to a few thousand light-years away. One light year is about 6 trillion (6,000,000,000,000) miles.

Nonetheless, Kepler was able to detect  the presence of a handful of Earth-sized planets in the habitable zones of their stars.  The Kepler-62 system held one of them, and it is 1200 light-years away.  In contrast, the four Earth-sized planets in the habitable zone of the much-studied Trappist-1 system are 39 light-years away.

Kepler made its observations using the the transit technique, which looks for tiny dips in the amount of light coming from a star caused by the presence of a planet passing in front of the star.  While the inference that exoplanets are ubiquitous came from Kepler results, the telescope was actually observing but a small bit of the sky.  It has been estimated that it would require around 400 space telescopes like Kepler to cover the whole sky.

What’s more, only planets whose orbits are seen edge-on from Earth can be detected via the transit method, and that rules out a vast number of exoplanets.

The bulk of the stars that were selected for close Kepler observation were more or less sun-like, but a sampling of other stars occurred as well. One of the most important factors was brightness. Detecting minuscule changes in brightness caused by transiting planet is impossible if the star is too dim.

 

The artist’s concept depicts Kepler-186f, the first validated Earth-size planet to orbit a distant star in the habitable zone. (NASA Ames/SETI Institute/JPL-Caltech)

 

Four years into the mission, after the primary mission objectives had been met, mechanical failures temporarily halted observations. The mission team was able to devise a fix, switching the spacecraft’s field of view roughly every three months. This enabled an extended mission for the spacecraft, dubbed K2, which lasted as long as the first mission and bumped Kepler’s count of surveyed stars up to more than 500,000.

But it was inevitable that the mission would come to an end sooner rather than later because of that dwindling fuel supply, needed to keep the telescope properly pointed.

Kepler cannot be refueled because NASA decided to place the telescope in an orbit around the sun that is well beyond the influence of the Earth and moon — to simplify operations and ensure an extremely quiet, stable environment for scientific observations.  So Kepler was beyond the reach of any refueling vessel.  The Kepler team compensated by flying considerably more fuel than was necessary to meet the mission objectives.

The video below explains what will happen to the Kepler capsule once it is decommissioned.  But a NASA release explains that the final commands “will be to turn off the spacecraft transmitters and disable the onboard fault protection that would turn them back on. While the spacecraft is a long way from Earth and requires enormous antennas to communicate with it, it is good practice to turn off transmitters when they are no longer being used, and not pollute the airwaves with potential interference.”

 

 

And so Kepler will actually continue orbiting for many decades, just as its legacy will continue long after operations cease.

Kepler’s follow-on exoplanet surveyor — the Transiting Exoplanet Survey Satellite or TESS — was launched this year and has begun sending back data.  Its primary mission objective is to survey the brightest stars near the Earth for transiting exoplanets. The TESS satellite uses an array of wide-field cameras to survey some 85% of the sky, and is planned to last for two years.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Technosignatures and the Search for Extraterrestrial Intelligence

Facebooktwittergoogle_plusredditpinterestlinkedinmail
A rendering of a potential Dyson sphere, named after Freeman A. Dyson. As proposed by the physicist and astromomer decades ago, they would collect solar energy on a solar system wide scale for highly advanced civilizations. (SentientDevelopments.com)

The word “SETI” pretty much brings to mind the search for radio signals come from distant planets, the movie “Contact,” Jill Tarter, Frank Drake and perhaps the SETI Institute, where the effort lives and breathes.

But there was a time when SETI — the Search for Extraterrestrial Intelligence — was a significantly broader concept, that brought in other ways to look for intelligent life beyond Earth.

In the late 1950s and early 1960s — a time of great interest in UFOs, flying saucers and the like — scientists not only came up with the idea of searching for distant intelligent life via unnatural radio signals, but also by looking for signs of unexpectedly elevated heat signatures and for optical anomalies in the night sky.

The history of this search has seen many sharp turns, with radio SETI at one time embraced by NASA, subsequently de-funded because of congressional opposition, and then developed into a privately and philanthropically funded project of rigor and breadth at the SETI Institute.  The other modes of SETI went pretty much underground and SETI became synonymous with radio searches for ET life.

But this history may be about to take another sharp turn as some in Congress and NASA have become increasingly interested in what are now called “technosignatures,” potentially detectable signatures and signals of the presence of distant advanced civilizations.  Technosignatures are a subset of the larger and far more mature search for biosignatures — evidence of microbial or other primitive life that might exist on some of the billions of exoplanets we now know exist.

And as a sign of this renewed interest, a technosignatures conference was scheduled by NASA at the request of Congress (and especially retiring Republican Rep. Lamar Smith of Texas.)  The conference took place in Houston late last month, and it was most interesting in terms of the new and increasingly sophisticated ideas being explored by scientists involved with broad-based SETI.

“There has been no SETI conference this big and this good in a very long time,” said Jason Wright, an astrophysicist and professor at Pennsylvania State University and chair of the conference’s science organizing committee.  “We’re trying to rebuild the larger SETI community, and this was a good start.”

 

At this point, the search for technosignatures is often likened to that looking for a needle in a haystack. But what scientists are trying to do is define their haystack, determine its essential characteristics, and learn how to best explore it. (Wiki Commons)

 

During the three day meeting in Houston, scientists and interested private and philanthropic reps. heard talks that ranged from the trials and possibilities of traditional radio SETI to quasi philosophical discussions about what potentially detectable planetary transformations and by-products might be signs of an advanced civilization. (An agenda and videos of the talks are here.)

The subjects ranged from surveying the sky for potential millisecond infrared emissions from distant planets that could be purposeful signals, to how the presence of certain unnatural, pollutant chemicals in an exoplanet atmosphere that could be a sign of civilization.  From the search for thermal signatures coming from megacities or other by-products of technological activity, to the possible presence of “megastructures” built to collect a star’s energy by highly evolved beings.

Michael New is Deputy Associate Administrator for Research within NASA’s Science Mission Directorate. He was initially trained in chemical physics. (NASA)

All but the near infrared SETI are for the distant future — or perhaps are on the science fiction side — but astronomy and the search for distant life do tend to move forward slowly.  Theory and inference most often coming well before observation and detection.

So thinking about the basic questions about what scientists might be looking for, Wright said, is an essential part of the process.

Indeed, it is precisely what Michael New, Deputy Associate Administrator for Research within NASA’s Science Mission Directorate, told the conference. 

He said that he, NASA and Congress wanted the broad sweep of ideas and research out there regarding technosignatures, from the current state of the field to potential near-term findings, and known limitations and possibilities.

“The time is really ripe scientifically for revisiting the ideas of technosignatures and how to search for them,” he said.

He offered the promise of NASA help  (admittedly depending to some extent on what Congress and the administration decide) for research into new surveys, new technologies, data-mining algorithms, theories and modelling to advance the hunt for technosignatures.

 

Crew members aboard the International Space Station took this nighttime photograph of much of the Atlantic coast of the United States. The ability to detect the heat and light from this kind of activity on distant exoplanets does not exist today, but some day it might and could potentially help discover an advanced extraterrestrial civilization. (NASA)

 

Among the several dozen scientists who discussed potential signals to search for were the astronomer Jill Tarter, former director of the Center for SETI Research, Planetary Science Institute astrobiologist David Grinspoon and University of Rochester astrophysicist Adam Frank.  They all looked at the big picture, what artifacts in atmospheres, on surfaces and perhaps in space that advanced civilizations would likely produce by dint of their being “advanced.”

All spoke of the harvesting of energy to perform work as a defining feature of a technological planet, with that “work” describing transportation, construction, manufacturing and more.

Beings that have reached the high level of, in Frank’s words, exo-civilization produce heat, pollutants, changes to their planets and surroundings in the process of doing that work.  And so a detection of highly unusual atmospheric, thermal, surface and orbital conditions could be a signal.

One example mentioned by several speakers is the family of chemical chloroflourohydrocarbons (CFCs,)  which are used as commercial refrigerants, propellants and solvents.

Astronomner Jill Tarter is an iconic figure in the SETI world and led the SETI Institute for 30 years. (AFP)

These CFCs are a hazardous and unnatural pollutant on Earth because they destroy the ozone layer, and they could be doing something similar on an exoplanet.  And as described in the conference, the James Webb Space Telescope — once it’s launch and working — could most likely detect such an atmospheric compound if it’s in high concentration and the project was given sufficient telescope time.

A similar single finding described by Tarter that could be revolutionary is the radioactive isotope tritium, which is a by-product of the nuclear fusion process.  It has a short half-life and so any distant discovery would point to a recent use of nuclear energy (as long as it’s not associated with a recent supernova event, which can also produce tritium.)

But there many other less precise ideas put forward.

Glints on the surface of planets could be the product of technology,  as might be weather on an exoplanet that has been extremely well stabilized, modified planetary orbits and chemical disequilibriums in the atmosphere based on the by-products of life and work.  (These disequilibriums are a well-established feature of biosignature research, but Frank presented the idea of a technosphere which would process energy and create by-products at a greater level than its supporting biosphere.)

Another unlikely but most interesting example of a possible technosignature put forward by Tarter and Grinspoon involved the seven planets of the Trappist-1 solar system, all tidally locked and so lit on only one side.  She said that they could potentially be found to be remarkably similar in their basic structure, alignment and dynamics. As Tarter suggested, this could be a sign of highly advanced solar engineering.

 

Artist rendering of the imagined Trappist-1 solar system that had been terraformed to make the planets similar and habitable.  The system is one of the closest found to our own — about 40 light years.

 

Grinspoon seconded that notion about Trappist-1, but in a somewhat different context.

He has worked a great deal on the question of today’s anthroprocene era — when humans actively change the planet — and he expanded on his thinking about Earth into the galaxies.

Grinspoon said that he had just come back from Japan, where he had visited Hiroshima and its atomic bomb sites, and came away with doubts that we were the “intelligent” civilization we often describe ourselves in SETI terms.  A civilization that may well self destruct — a fate he sees as potentially common throughout the cosmos — might be considered “proto-intelligent,” but not smart enough to keep the civilization going over a long time.

Projecting that into the cosmos, Grinspoon argued that there may well be many such doomed civilizations, and then perhaps a far smaller number of those civilizations that make it through the biological-technological bottleneck that we seem to be facing in the centuries ahead.

These civilizations, which he calls semi-immortal, would develop inherently sustainable methods of continuing, including modifying major climate cycles, developing highly sophisticated radars and other tools for mitigating risks, terraforming nearby planets, and even finding ways to evolve the planet as its place in the habitable zone of its host star becomes threatened by the brightening or dulling of that star.

The trick to trying to find such truly evolved civilizations, he said, would be to look for technosignatures that reflect anomalous stability and not rampant growth. In the larger sense, these civilizations would have integrated themselves into the functioning of the planet, just as oxygen, first primitive and then complex life integrated themselves into the essential systems of Earth.

And returning to the technological civilizations that don’t survive, they could produce physical artifacts that now permeate the galaxy.

 

MeerKAT, originally the Karoo Array Telescope, is a radio telescope consisting of 64 antennas now being tested and verified in the Northern Cape of South Africa. When fully functional it will be the largest and most sensitive radio telescope in the southern hemisphere until the Square Kilometre Array is completed in approximately 2024. (South African Radio Astronomy Observatory)

 

This is exciting – the next phase Square kilometer Array (SKA2) will be able to detect Earth-level radio leakage from nearby stars. (South African Radio Astronomy Observatory)

 

While the conference focused on technosignature theory, models, and distant possibilities, news was also shared about two concrete developments involving research today.

The first involved the radio telescope array in South Africa now called MeerKAT,  a prototype of sorts that will eventually become the gigantic Square Kilometer Array.

Breakthrough Listen, the global initiative to seek signs of intelligent life in the universe, would soon announce the commencement of  a major new program with the MeerKAT telescope, in partnership with the South African Radio Astronomy Observatory (SARAO).

Breakthrough Listen’s MeerKAT survey will examine a million individual stars – 1,000 times the number of targets in any previous search – in the quietest part of the radio spectrum, monitoring for signs of extraterrestrial technology. With the addition of MeerKAT’s observations to its existing surveys, Listen will operate 24 hours a day, seven days a week, in parallel with other surveys.

This clearly has the possibility of greatly expanded the amount of SETI listening being done.  The SETI Institute, with its radio astronomy array in northern California and various partners, have been listening for almost 60 years, without detecting a signal from our galaxy.

That might seem like a disappointing intimation that nothing or nobody else is out there, but not if you listen to Tarter explain how much listening has actually been done.  Almost ten years ago, she calculated that if the Milky Way galaxy and everything in it was an ocean, then SETI would have listened to a cup full of water from that ocean.  Jason Wright and his students did an updated calculation recently, and now the radio listening amounts to a small swimming pool within that enormous ocean.

 

The NIROSETI team with their new infrared detector inside the dome at Lick Observatory. Left to right: Remington Stone, Dan Wertheimer, Jérome Maire, Shelley Wright, Patrick Dorval and Richard Treffers. (Laurie Hatch)

The other news came from Shelley Wright of the University of California, San Diego, who has been working on an optical SETI instrument for the Lick Observatory.

The Near-Infrared Optical SETI (NIROSETI) instrument she and her colleagues have developed is the first instrument of its kind designed to search for signals from extraterrestrials at near-Infrared wavelengths. The near-infrared regime is an excellenr spectral region to search for signals from extraterrestrials, since it offers a unique window for interstellar communication.

The NIROSETI instrument utilizes two near-infrared photodiodes to be able to detect artificial, very fast (nanosecond) pulses of infrared radiation.

The NIROSETI instrument, which is mounted on the Nickel telescope at Lick Observatory, splits the incoming near-infrared light onto two channels, and then checks for coincident events, which indicate signals that are identified by both detectors simultaneously.

Jason Wright is an assistant professor of astronomy and astrophysics at Penn State. His reading list is here.

Wright of Penn State was especially impressed by the project, which he said can look at much of the sky at once and was put together with on very limited budget.

Wright, who teaches a course on SETI at Penn State and is a co-author of a recent paper trying to formalize SETI terminology, said his own take-away from the conference is that it may well represent an important and positive moment in the history of technosignatures.

“Without NASA support, the whole field has lacked the normal structure by which astronomy advances,” he said.  “No teaching of the subject, no standard terms, no textbook to formalize findings and understandings.

“The Seti Institiute carried us through the dark times, and they did that outside of normal, formal structures. The Institute remains essential, but hopefully that reflex identification will start to change.”

 

Participants in the technosignatures conference in Houston last month, the largest SETI gathering in years.  And this one was sponsored by NASA and put together by the NExSS for Exoplanet Systems Science (NExSS,)  an interdisciplinary agency initiative. (Delia Enriquez)
Facebooktwittergoogle_plusredditpinterestlinkedinmail

15,000 Galaxies in One Image

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Astronomers have just assembled one of the most comprehensive portraits yet of the universe’s evolutionary history, based on a broad spectrum of observations by the Hubble Space Telescope and other space and ground-based telescopes.  Each of the approximately 15,000 specks and spirals are galaxies, widely distributed in time and space. (NASA, ESA, P. Oesch of the University of Geneva, and M. Montes of the University of New South Wales)

Here’s an image to fire your imagination: Fifteen thousand galaxies in one picture — sources of light detectable today that were generated as much as 11 billion years ago.

Of those 15,000 galaxies, some 12,000 are inferred to be in the process of forming stars.  That’s hardly surprising because the period around 11 billions years ago has been determined to be the prime star-forming period in the history of the universe.  That means for the oldest galaxies in the image, we’re seeing light that left its galaxy but three billion years after the Big Bang.

This photo mosaic, put together from images taken by the Hubble Space Telescope and other space and ground-based telescopes, does not capture the earliest galaxies detected. That designation belongs to a galaxy found in 2016 that was 420 million years old at the time it sent out the photons just collected. (Photo below.)

Nor is it quite as visually dramatic as the iconic Ultra Deep Field image produced by NASA in 2014. (Photo below as well.)

But this image is one of the most comprehensive yet of the history of the evolution of the universe, presenting galaxy light coming to us over a timeline up to those 11 billion years.  The image was released last week by NASA and supports an earlier paper in The Astrophysical Journal by Pascal Oesch of Geneva University and a large team of others.

And it shows, yet again, the incomprehensible vastness of the forest in which we are a tiny leaf.

Some people apparently find our physical insignificance in the universe to be unsettling.  I find it mind-opening and thrilling — that we now have the capability to not only speculate about our place in this enormity, but to begin to understand it as well.

The Ultra-Deep field composite, which contains approximately 10,000 galaxies.  The images were collected over a nine-year period.  {NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)} 

For those unsettled by the first image, here is the 2014 Ultra Deep Field image, which is 1/14 times the area of the newest image.  More of the shapes in this photo look to our eyes like they could be galaxies, but those in the first image are essentially the same.

In both images, astronomers used the ultraviolet capabilities of the Hubble, which is now in its 28th year of operation.

Because Earth’s atmosphere filters out much ultraviolet light, the space-based Hubble has a huge advantage because it can avoid that diminishing of ultraviolet light and provide the most sensitive ultraviolet observations possible.

That capability, combined with infrared and visible-light data from Hubble and other space and ground-based telescopes, allows astronomers to assemble these ultra deep space images and to gain a better understanding of how nearby galaxies grew from small clumps of hot, young stars long ago.

The light from distant star-forming regions in remote galaxies started out as ultraviolet. However, the expansion of the universe has shifted the light into infrared wavelengths.

These images, then,  straddle the gap between the very distant galaxies, which can only be viewed in infrared light, and closer galaxies which can be seen across a broad spectrum of wavelengths.

The farthest away galaxy discovered so far is called GN-z11 and is seen now as it was 13.4 billion years in the past.  That’s  just 400 million years after the Big Bang.

GN-z11 is surprisingly bright infant galaxy located in the direction of the constellation of Ursa Major. Thus NASA video explains much more:

The farthest away galaxy ever detected — GN-z11. {NASA, ESA, P. Oesch (Yale University, Geneva University), G. Brammer (STScI), P. van Dokkum (Yale University), and G. Illingworth (University of California, Santa Cruz)} 

 

Galaxy formation chronology, showing GN-z11 in context. Hubble spectroscopically confirmed the farthest away galaxy to date. {NASA, ESA, P. Oesch and B. Robertson (University of California, Santa Cruz), and A. Feild (STScI)}

In addition representing cutting-edge science — and enabling much more — these looks into the most distant cosmic past offer a taste of what the James Webb Space Telescope, now scheduled to launch in 2021, is designed to explore.  It will have greatly enhanced capabilities to explore in the infrared, which will advance ultra-deep space observing.

But putting aside the cosmic mysteries that ultra deep space and time astronomy can potentially solve, the images available today from Hubble and other telescopes are already more than enough to fire the imagination about what is out there and what might have been out there some millions or billions of years ago.

A consensus of exoplanet scientists holds that each star in the Milky Way galaxy is likely to have at least one planet circling it, and our galaxy alone has billions and billions of stars.  That makes for a lot of planets that just might orbit at the right distance from its host star to support life and potentially have atmospheric, surface and subsurface conditions that would be supportive as well.

A look these deep space images raises the question of how many of them also house stars with orbiting planets, and the answer is probably many of them.  All the exoplanets identified so far are in the Milky Way, except for one set of four so far.

Their discovery was reported earlier this year by Xinyu Dai, an astronomer at the University of Oklahoma, and his co-author, Eduardo Guerras.  They came across what they report are planets while using NASA’s Chandra X-ray Observatory to study the environment around a supermassive black hole in the center of a galaxy located 3.8 billion light-years away from Earth.

In The Astrophysical Journal Letters , the authors report the galaxy is home to a quasar, an extremely bright source of light thought to be created when a very large black hole accelerates material around it. But the researchers said the results of their study indicated the presence of planets in a galaxy that lies between Earth and the quasar.

Furthermore, the scientists said results suggest that in most galaxies there are hundreds of free-floating planets for every star, in addition to those which might orbit a star.

The takeaway for me, as someone who has long reported on astrobiology and exoplanets, is that it is highly improbable that there are no other planets out there where life occurs, or once occurred.

As these images make clear, the number of planets that exist or have existed in the universe is essentially infinite.  That no others harbor life seems near impossible.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

A New Frontier for Exoplanet Hunting

Facebooktwittergoogle_plusredditpinterestlinkedinmail
The spectrum from the newly-assembled EXtreme PREcision Spectrometer (EXPRES)  shines on Yale astronomy professor Debra Fischer, who is principal investigator of the project. The stated goal of EXPRES is to find many Earth-size planets via the radial velocity method — something that has never been done. (Ryan Blackman/Yale)

The first exoplanets were all found using the radial velocity method of measuring the “wobble” of a star — movement caused by the gravitational pull of an orbiting planet.

Radial velocity has been great for detecting large exoplanets relatively close to our solar system, for assessing their mass and for finding out how long it takes for the planet to orbit its host star.

But so far the technique has not been able to identify and confirm many Earth-sized planets, a primary goal of much planet hunting.  The wobble caused by the presence of a planet that size has been too faint to be detected by current radial velocity instruments and techniques.

However, a new generation of instruments is coming on line with the goal of bringing the radial velocity technique into the small planet search.  To do that, the new instruments, together with their telescopes. must be able to detect a sun wobble of 10 to 20 centimeters per second.  That’s quite an improvement on the current detection limit of about one meter per second.

At least three of these ultra high precision spectrographs (or sometimes called spectrometers) are now being developed or deployed.  The European Southern Observatory’s ESPRESSO instrument has begun work in Chile; Pennsylvania State University’s NEID spectrograph (with NASA funding) is in development for installation at the Kitt Peak National Observatory in Arizona; and the just-deployed EXPRES spectrograph put together by a team led by Yale University astronomers (with National Science Foundation funding) is in place at the Lowell Observatory outside of Flagstaff, Arizona.

The principal investigator of EXPRES, Debra Fischer, attended the recent University of Cambridge Exoplanets2 conference with some of her team, and there I had the opportunity to talk with them. We discussed the decade-long history of the instrument, how and why Fischer thinks it can break that 1-meter-per-second barrier, and what it took to get it into attached and working.

 

This animation shows how astronomers use very precise spectrographs to find exoplanets. As the planet orbits its gravitational pull causes the parent star to move back and forth. This tiny radial motion shifts the observed spectrum of the star by a correspondingly small amount because of the Doppler shift. With super-sensitive spectrographs the shifts can be measured and used to infer details of a planet’s mass and orbit. ESO/L. Calçada)

One of the earliest and most difficult obstacles to the development of EXPRES, Fischer told me, was that many in the astronomy community did not believe it could work.

Their view is that precision below that one meter per second of host star movement cannot be measured accurately.  Stars have flares, sunspots and a generally constant churning, and many argue that the turbulent nature of stars creates too much “noise” for a precise measurement below that one-meter-per-second level.

Yet European scientists were moving ahead with their ESPRESSO ultra high precision instrument aiming for that 10-centimeter-per-second mark, and they had a proven record of accomplishing what they set out to do with spectrographs.

In addition to the definite competiti0n going on, Fisher also felt that radial velocity astronomers needed to make that leap to measuring small planets “to stay in the game” over the long haul.

She arrived at Yale in 2009 and led an effort to build a spectrograph so stable and precise that it could find an Earth-like planet.  To make clear that goal, the instrument is at the center of a project called “100 Earths.”

Building on experience gained from developing two earlier spectrographs, Fischer and colleagues began the difficult and complicated process of getting backers for EXPRES, of finding a telescope observatory that would house it (The Discovery Channel Telescope at Lowell) and in the end adapting the instrument to the telescope.

And now comes the actual hard part:  finding those Earth-like planets.

As Fischer described it:  “We know from {the Kepler Telescope mission} that most stars have small rocky planets orbiting them.  But Kepler looked at stars very far away, and we’ll be looking at stars much, much closer to us.”

Nonetheless, those small planets will still be extremely difficult to detect due to all that activity on the host suns.

 

EXPRES in its vacuum-sealed chamber at the Lowell Observatory. will help detect Earth-sized planets in neighboring solar systems. (Ryan Blackman/Yale)

 

 

The 4.3 meter Discovery Channel Telescope in the Lowell Observatory in Arizona.  The photons collected by the telescope are delivered via optical fiber to the EXPRES instrument. (Boston University)

Spectrographs such as EXPRES are instruments astronomers use to study light emitted by planets, stars, and galaxies.

They are connected to either a ground-based or orbital telescope and they stretch out or split a beam of light into a spectrum of frequencies.  That spectrum is then analyzed to determine an object’s speed, direction, chemical composition, or mass.  With planets, the work involves determining (via the Doppler shift seen in the spectrum) whether and how much a sun is moving to and away from Earth due to the pull of a planet.

As Fisher and EXPRES postdoctoral fellow John Brewer explained it, the signal (noise) coming from the turbulence of the star is detectably different from the signal made by the wobble of a star due to the presence of an orbiting planet.

While these differences — imprinted in the spectrum captured by the spectrograph — have been known for some time, current spectrographs haven’t had sufficient resolving power to actually detect the difference.

If all works as planned for the EXPRES, Espresso and NEID spectrographs, they will have that necessary resolving power and so can, in effect, filter out the noise from the sun and identify what can only come from a planet-caused wobble.  If they succeed, they provide a major new pathway to  for astronomers to search for Earth-sized worlds.

“This is my dream machine, the one I always wanted to build,” Fischer said. “I had a belief that if we went to higher resolution, we could disentangle (the stellar noise from the planet-caused wobble.)

“I could still be wrong, but I definitely think that trying was the right choice to make.”

This image shows spectral data from the first light last December of the ESPRESSO instrument on ESO’s Very Large Telescope in Chile. The light from a star has been dispersed into its component colors. This view has been colorised to indicate how the wavelengths change across the image, but these are not exactly the colors that would be seen visually. (ESO/ESPRESSO)

While Fischer and others have very high hopes for EXPRES, it is not the sort of  big ticket project that is common in astronomy.  Instead, it was developed and built primarily with a $6 million grant from National Science Foundation.

It was completed on schedule by the Yale team, though the actual delivering of EXPRES to Arizona and connecting it to the telescope turned out to be a combination of hair-raising and edifying.

Twice, she said, she drove from New Haven to Flagstaff with parts of the instrument; each trip in a Penske rental truck and with her son Ben helping out.

And then when the instrumentation was in process late last year, Fischer and her team learned that funds for the scientists and engineers working on that process had come to an end.

Francesco Pepe of the University of Geneva. He is the principal scientist for the ESPRESSO instrument and gave essential aid to the EXPRES team when they needed it most.

She was desperate, and sent a long-shot email to Francesco Pepe of University of Geneva, the lead scientist and wizard builder of several European spectrographs, including ESPRESSO. In theory, he and his instrument — which went into operation late last year at the ESO Very Large Telescope in Chile — will be competing with EXPRES for discoveries and acknowledgement.

Nonetheless, Pepe heard Fischer out and understood the predicament she was in.  ESPRESSO had been installed and so he was able to contact an associate who freed up two instrumentation specialists who flew to Flagstaff to finish the work.  It was, Fischer said, an act of collegial generosity and scientific largesse that she will never forget.

Fischer is at the Lowell observatory now, using the Arizona monsoon as a time to clean up many details before the team returns to full-time observing.  She write about her days in an EXPRES blog.  Earlier, in March after the instrumentation had been completed and observing had commenced, she wrote this:

“Years of work went into EXPRES and as I look at this instrument, I am surprised that I ever had the audacity to start this project. The moment of truth starts now. It will take us a few more months of collecting and analyzing data to know if we made the right design decisions and I feel both humbled and hopeful. I’m proud of the fact that our design decisions were driven by evidence gleaned from many years of experience. But did I forget anything?”

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Breakthrough Findings on Mars Organics and Mars Methane

Facebooktwittergoogle_plusredditpinterestlinkedinmail
The Curiosity rover on Mars takes a selfie at a site named Mojave. Rock powdered by the rover drill system and then intensively heated rock and then heated to as much as 800 degrees centigrade produced positive findings for long-sought organics. (NASA/JPL-Caltech/MSSS.)

A decades-long quest for incontrovertible and complex Martian organics — the chemical building blocks of life — is over.

After almost six years of searching, drilling and analyzing on Mars, the Curiosity rover team has conclusively detected three types of naturally-occurring organics that had not been identified before on the planet.

The Mars organics Science paper, by NASA’s Jennifer Eigenbrode and much of the rover’s Sample Analysis on Mars (SAM) instrument team, was twinned with another paper describing the discovery of a seasonal pattern to the release of the simple organic gas methane on Mars.

This finding is also a major step forward not only because it provides ground truth for the difficult question of whether significant amounts of methane are in the Martian atmosphere, but equally important it determines that methane concentrations appear to change with the seasons. The implications of that seasonality are intriguing, to say the least.

In an accompanying opinion piece in Science, Inges Loes ten Kate of Utrecht University in  Netherlands wrote of the two papers: “Both these findings are breakthroughs in astrobiology.”

The clear conclusion of these (and other) recent findings is that Mars is not a “dead” planet where little ever changes.  Rather, it’s one with cycles that appear to produce not only methane but also sporadic surface water and changing dune formations.

Remains of 3.5 billion-year old lake that once filled Gale Crater. NASA scientists concluded early in the Curiosity mission that the planet was habitable long ago based on the study of mudstone remains like these. (NASA/JPL-Caltech/MSSS)

Finding organic compounds on Mars has been a prime goal of the Curiosity rover mission.

Those carbon-based compounds surely fall from the sky on Mars, as they do on Earth and everywhere else, but identifying them has proven illusive.

The consequences of that non-discovery have been significant.  Going back to the Viking missions of 1976, scientists concluded that life was not possible on Mars because there were no organics, or none that were detected.

Jen Eigenbrode, research astrobiologist at NASA’s Goddard Space Flight Center. (NASA/W. Hrybyk)

But the reasons for the disappearing organics are pretty well understood.  Without much of an atmosphere to protect it, the Martian surface is bombarded with ultraviolet radiation, which can destroy organic compounds.  Or, in the case of the samples discovered by the SAM team, large organic macromolecules — the likes of proteins, membranes and DNA — are broken up into much smaller pieces.

That’s what the team found, Eigenbrode told me. The organics were probably preserved, she said, because of exceptionally high levels of sulfur present in that part of Gale Crater.

The organics, extracted from mudstone at the Mojave and Confidence Hill sites, had bonded tightly with ancient non-organic material.  The organic material was freed to be collected as gas only after being exposed to temperatures of more than 500 to 800 centigrade in the SAM oven.

“This material was buried for billions of years and then exposed to extreme surface conditions, so there’s a limit to what we can learn about.  Did it come from life?  We don’t know.

“But the fact we found the organic carbon adds to the habitability equation.  It was in a lake environment that we know could have supported life.  Organics are things that organisms can eat.”

It will take different kinds of instruments and samples from drilling deeper into the extreme Martian surface to answer the question of whether the organics came from living microbes.  But for Eigenbrode, future answers of either “yes” or “no” are almost equally interesting.

Finding clear signs of early Martian life would certainly be hugely important, she said.  But a conclusion that Mars never had life — although it had conditions some 3.5 to 3.8 billion years ago quite similar to conditions on Earth at that time — raises the obvious question of “why not?”

NASA’s Curiosity rover raised robotic arm with drill pointed skyward while exploring Vera Rubin Ridge at the base of Mount Sharp inside Gale Crater. This navcam camera mosaic was stitched from raw images taken on Sol 1833, Oct. 2, 2017 and colorized. (NASA/JPL-Caltech/Ken Kremer, Marco Di Lorenzo)

Organic molecules are the building blocks of all known life on Earth, and consist of a wide variety of molecules made primarily of carbon, hydrogen, and oxygen atoms. However, organic molecules can also be made by chemical reactions that don’t involve life.

Examples of non-biological sources include chemical reactions in water at ancient Martian hot springs or delivery of organic material to Mars by interplanetary dust or fragments of asteroids and comets.

It needs to be said that today’s Mars organics announcement was not the first we have heard.  In 2014, a NASA team reported the presence of chlorine-based organics in Sheepbed mudstone at Yellowknife Bay, the first ancient Mars lake visited by Curiosity.

That work, led by NASA Goddard scientists Caroline Freissinet and Daniel Glavin and published in the Journal of Geophysical Research, focused on signatures from unusual organics not seen naturally on Earth.

The organics were complex and made entirely of Martian components, the paper reported.  But because they combined chlorine with the organic hydrocarbons, they are not considered to be as “natural” as the discovery announced today.

And when it comes to organics on Mars, the complicated history of research into the presence of the gas methane (a simple molecule that consists of carbon and hydrogen) also shows the great challenges involved in making these measurements on Mars.

By measuring absorption of light at specific wavelengths, the tunable laser spectrometer on Curiosity measures concentrations of methane, carbon dioxide and water vapor in the Martian atmosphere. (NASA)

 

The gold-plated Sample Analysis on Mars contains three instruments that make the measurements of organics and methane.  (NASA/Goddard Space Flight Center)

The second Science paper, authored by Chris Webster of NASA’s Jet Propulsion Lab and colleagues, reports that the gas methane has been detected regularly in recent years, with surprising seasonality.

“The history of Mars methane has been frustrating, with reports of some large plumes and spikes detected, but none have been repeatable.  It’s almost like they’re random,” he told me.  “But now we can see a large seasonal cycle in the background of these detections, and that’s extremely important.”

Over three Mars years, or almost five Earth years, Webster said there have been significant increases in methane detected during the summer, and especially the late summer. That tripling of the methane counts is considered too great to be random, especially since the count declines as predicted after the summer ends.

No definite explanation of why this happens has emerged yet, but one theory has been embraced by some scientists.

While it is still cold in the Martian summer, it can get warm enough where the sun shines directly on a collection of ice for some melting to occur.  And that melting, the paper reports, could provide an escape valve for methane collected long ago under the surface.  The process is termed “microseepage.”

 

This illustration shows the ways in which methane from the subsurface might find its way to the
surface where its release could produce the large seasonal variation in the atmosphere
as observed by Curiosity. Potential methane sources include byproducts from organisms alive or long dead, ultraviolet degradation of organics, or water-rock chemistry; and its losses include atmospheric photochemistry and surface reactions. Seasons refer to the northern hemisphere. The plotted data is from Curiosity’s TLS-SAM instrument, and the curved line through the data is to aid the eye. (NASA/JPL-Caltech)

Methane is a crucial organic in astrobiology because most of that gas found on Earth comes from biology, although various non-biological processes can produce methane as well.

Today’s paper by Webster et al is the third in Science on Mars methane as measured by Curiosity, and it is the first to find a seasonal pattern.  The first paper, in 2013,  actually reported there was no methane measured in early runs, a conclusion that led to push-back from many of those working in the field.

While the Mars methane results released today are being described as a “breakthrough,” they follow closely the findings of a Science paper in 2009 by Michael Mumma and Geronimo Villanueva, both at NASA Goddard.

The two reported then similar findings of plumes of methane on Mars, of a seasonality associated with their distribution, and a similar conclusion that the methane probably was coming from subsurface reservoirs.  Like Webster et al, Mumma and Villanueva said they were unable to determine if the source of methane was biological or geological.

The methane levels in the plumes they found were considerably higher than detected so far by Curiosity, but what they were detecting was quite different.  Using ground-based telescopes, they detected the high concentrations in two specific areas over a number of years, while Curiosity is measuring methane levels that are more global or regional.

Red areas indicate where in 2003 ground-based observers detected concentrations of methane in the Martian atmosphere, measured in parts per billion (ppb).  (NASA / M. Mumma & others)

Just as Webster was criticized for his initial paper saying there was no methane detected on Mars, the Mumma team also got sharp questions about their methodology and conclusions.  This grew as their numerous follow-up efforts to detect the Mars methane proved unsuccessful.

But now Webster says the Curiosity findings have essentially “confirmed” what Mumma and Villanueva reported nine years ago.

Still, the Curiosity results are a breakthrough because they were made on Mars rather than through a telescope. Mumma, who described the new Curiosity results as “satisfying,” agreed that they were a major step forward.

“This is how science works,” he said.  “We do our work and put out our papers and other scientists react.  We take it all in and make changes if needed.  But the big changes come when new, and maybe different, data is presented.”

And that’s exactly what will be happening soon regarding methane on Mars.  Beginning early this year, the European/Russian Trace Gas Orbiter (TGO) has been collecting data specifically on Mars gases including methane.  Unlike previous Mars methane campaigns, this one can potentially determine whether the methane being released from below the surface was formed by biology or geology — although not without great difficulty.

Mumma, who is part of that TGO team, said the first release of information is due in the fall.

 

 

 

 

 

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail