Prepare For Lift-off! BepiColombo Launches For Mercury

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Artist illustration of the BepiColombo orbiters, MIO and Bepi, around Mercury (JAXA).

This Friday (October 19) at 10:45pm local time in French Guinea, a spacecraft is set to launch for Mercury. This is the BepiColombo mission which will begin its seven year journey to our solar system’s innermost planet. Surprisingly, the science goals for investigating this boiling hot world are intimately linked to habitability.

Mercury orbits the sun at an average distance of 35 million miles (57 million km); just 39% of the distance between the sun and the Earth. The planet therefore completes a year in just 88 Earth days.

The close proximity to the sun puts Mercury in a 3:2 tidal lock, meaning the planet rotates three times for every two orbits around the sun. (By contrast, our moon is in a 1:1 tidal lock and rotates once for every orbit around the Earth.) With only a tenuous atmosphere to redistribute heat, this orbit results in extreme temperatures between about -290°F and 800°F (-180°C to 427°C). The overall picture is one of the most inhospitable of worlds, so what do we hope to learn from this barren and baked land?

BepiColombo is a joint mission between the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA). It consists of two orbiters, one built by each space agency. The mission is named after Giuseppe “Bepi” Colombo, an Italian mathematician who calculated the orbit of the first mission to Mercury —NASA’s Mariner 10— such that it could make repeated fly-bys of the planet.

When Mariner 10 reached Mercury in the mid-1970s, it made an astonishing discovery:  the planet had a weak magnetic field. The Earth also has a magnetic field that is driven by movement in its molten iron core.

However, with a mass of only 5.5% that of the Earth, the interior of Mercury was expected to have cooled sufficiently since its formation for the core to have solidified and jammed the breaks on magnetic field generation. This is thought to have happened to Mars, which is significantly larger than Mercury with a mass around 10% that of the Earth. So how does Mercury hold onto its field?

The discoveries only got stranger with the arrival of NASA’s MESSENGER mission in 2011. MESSENGER discovery that Mercury’s magnetic field was off-set, with the center shifted northwards by a distance equal to 20% of the planet’s radius.

The mysteries also do not end with Mercury’s wonky magnetic field. The planet’s density is very high, suggesting a much larger iron core relative to its volume compared to the Earth.

The thin atmosphere is mysteriously rich in sodium and there also appears to be more volatiles such as water ice than is expected for a planet that dances so close to the sun. All this points to a formation and evolution that we do not yet understand.

Artist impression of the JAXA orbiter, MIO, around Mercury (credit: JAXA).

The two BepiColombo orbiters will sweep around the planet to pick at these questions. The pair will get a global view of Mercury, in contrast to MESSENGER whose orbit did not allow a good view over the southern hemisphere.

“Getting data from the southern hemisphere to complement the details from MESSENGER is a logical next step to investigating the nature of Mercury’s magnetic field,” commented Masaki Fujimoto, Deputy Director General at JAXA’s Institute of Space and Astronautical Sciences (ISAS).

The European orbiter is the “Mercury Planetary Orbiter” (MPO), with “Bepi” as a nickname. Bepi will take a relatively close orbit around Mercury, with an altitude between 300 – 930 miles (480 – 1500 km). The main focus of the probe is the planet’s surface topology and composition, as well as a precise measurement of the gravitational field that reveals information about Mercury’s internal structure.

The Japanese orbiter is the “Mercury Magnetospheric Orbiter” (MMO) and was given the nickname “MIO” through a public contest held earlier this year and translates to “waterway” in Japanese.

Masaki Fujimoto, Deputy Director of ISAS, JAXA.

“Water related names received many votes,” explained Go Murakami, BepiColombo MIO project scientist. “Because in the Japanese language, Mercury is written ‘水星’ (suisei) meaning ‘water planet’.”

The focus for MIO is Mercury’s magnetic field and the interaction with the solar wind; a stream of high energy particles that comes from the sun. This requires exploration of the region around Mercury and MIO will take a correspondingly wider orbit than Bepi, with an altitude between 250 – 7500 miles (400 – 12,000km).

While Mercury itself is interesting, understanding the planet’s history has wide ranging implications for the search for habitable worlds around other stars.

The easiest exoplanets to spot are those on close orbits around dim red dwarf (also known as M-dwarf) stars. As they are far less luminous than our sun, even planets on close orbits around red dwarfs may receive a similar level of radiation to the Earth, placing them in the so-called “habitable zone.” An important example of this are the TRAPPIST-1 worlds, whose three habitable-zone planets have orbits lasting 6, 9 and 12 Earth days.

Go Murakami, BepiColombo MIO project scientist

However, the close proximity to the star comes with risks. Red dwarfs are particularly rambunctious, emitting flares that can strip the atmosphere of an orbiting planet. Mars is a classic example of this process.

Even orbiting a relatively quiet star at a distance further from the Earth, the thin atmosphere of Mars is being pulled away by the solar wind. Unless the TRAPPIST-1 worlds and those like them can protect their gases with a magnetic field, their surfaces may always be sterile.

While we know the Earth avoids this fate with its own magnetic field, it is not clear whether it would fare as well closer to the sun or with a weaker magnetic field. Mercury with its weak field and in the full blast of the solar wind offers an extreme comparison point.

A second insight Mercury could provide is that of the origin of rock. Planetary formation theories suggest there must have been mixing of dust grains in the planet-forming disc that circled the young sun. This would have shuffled up the elements that were condensing into solids at different temperatures within the disc. The exact nature and result of the shuffling remains a big question, yet it controls the composition of inner rocky planets that includes the Earth.

“The subject of planetary origins is very intriguing to me,” remarks Fujimoto. “JAXA’s asteroid sample return mission, Hayabusa2, is asking the question of where the water on Earth came from. BepiColombo will ask the complimentary question of how our planet’s rocky body was made.”

Together, the two orbiters cover a wide range of science of addressing these questions. They can also work as a pair by taking simultaneous measurements from different locations. This is particularly useful for analyzing time-varying events and also allows the planetary magnetic field to be separated out from the magnetic field carried by the solar wind.

The launch date for BepiColombo has been pushed back several times over the last few years. However, this has allowed for engineering improvements, and discoveries such as the TRAPPIST-1 planets have only added to the excitement of the mission.

“We are not unhappy about the launch delays,” said Fujimoto. “What has happened in planetary science during that period has made the expectation for BepiColombo even higher!”

The journey to the innermost planet is not a quick one. Due to arrive in 2025, the long duration is actually not due to distance but the need to brake. The pull from the sun’s gravity at such close proximity makes it hard for BepiColombo to slow sufficiently for the two probes to enter Mercury’s orbit.

The spacecraft therefore does nine planetary fly-bys; one by the Earth in April next year, then two for Venus and six for Mercury. The gravity of the planet can be used to slow down the spacecraft and allow Bepi and MIO to begin their main mission.

To my complete delight, ESA have started an animated series of shorts for the mission, similar to the cartoons for the Rosetta mission to comet 67P in 2014. These informative little videos depict the adventures of Bepi, MIO and the Mercury Transfer Module (MTM) that provides the propulsion to reach Mercury.

In addition to the videos, all three probes (and the mission itself) have twitter accounts @BepiColombo (main mission account), @esa_bepi (character account for Bepi which tweets in English), @jaxa_mmo (character account for MIO that tweets in English and Japanese) and @esa_mtm that tweets in… I’ll let you find that out!

The live launch feed from ESA is due to begin at 21:38 EDT on Friday, October 19. Good luck, BepiColombo!

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Human Space Travel, Health and Risk

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Astronauts in a mock-up of the Orion space capsule, which NASA plans to use in some form as a deep-space vehicle. (NASA)

 

We all know that human space travel is risky. Always has been and always will be.

Imagine, for a second, that you’re an astronaut about to be sent on a journey to Mars and back, and you’re in a capsule on top of NASA’s second-generation Space Launch System designed for that task.

You will be 384 feet in the air waiting to launch (as tall as a 38-floor building,) the rocket system will weigh 6.5 million pounds (equivalent to almost nine fully-loaded 747 jets) and you will take off with 9.2 million pounds of thrust (34 times the total thrust of one of those 747s.)

Given the thrill and power of such a launch and later descent, everything else seemed to pale in terms of both drama and riskiness.  But as NASA has been learning more and more, the risks continue in space and perhaps even increase.

We’re not talking here about a leak or a malfunction computer system; we’re talking about absolutely inevitable risks from cosmic rays and radiation generally — as well as from micro-gravity — during a long journey in space.

Since no human has been in deep space for more than a short time, the task of understanding those health risks is very tricky and utterly dependent on testing creatures other than humans.

The most recent results are sobering.  A NASA-sponsored team at Georgetown University Medical Center in Washington looked specifically at what could happen to a human digestive system on a long Martian venture, and the results were not reassuring.

Their results, published in the Proceedings of the National Academy of Sciences  (PNAS), suggests that deep space bombardment by galactic cosmic radiation and solar particles could significantly damage gastrointestinal tissue leading to long-term functional changes and problems. The study also raises concern about high risk of tumor development in the stomach and colon.

 

Galactic cosmic rays are a variable shower of charged particles coming from supernova explosions and other events extremely far from our solar system. The sun is the other main source of energetic particles this investigation detects and characterizes. The sun spews electrons, protons and heavier ions in “solar particle events” fed by solar flares and ejections of matter from the sun’s corona. Magnetic fields around Earth protect the planet from most of these heavy particles, but astronauts do not have that protect beyond low-Earth orbit. (NASA)

 

Kamal Datta, an associate professor in the Department of Biochemistry is project leader of the NASA Specialized Center of Research (NSCOR) at Georgetown and has been studying the effects of space radiation on humans for more than a decade.

He said that heavy ions (electrically charged atoms and molecules) of elements such as iron and silicon are damaging to humans because of their greater mass compared to mass-less photons such as x-rays and gamma rays prevalent on Earth.  These heavy ions, as well as low mass protons, are ubiquitous in deep space.

Kamal Datta of Georgetown University Medical Center works with NASA to understand the potential risks from galactic cosmic radiation to astronauts who may one day travel in deep space.

“With the current shielding technology, it is difficult to protect astronauts from the adverse effects of heavy ion radiation. Although there may be a way to use medicines to counter these effects, no such agent has been developed yet,” says Datta, also a member of Georgetown Lombardi Comprehensive Cancer Center.

“While short trips, like the times astronauts traveled to the moon, may not expose them to this level of damage, the real concern is lasting injury from a long trip, such as a Mars or other deep space missions which would be much longer” he said in a release.

Datta’s team has also published on the potentially harmful effects of galactic cosmic radiation on the brain and other teams are looking at potential deep-space travel dangers the human cardio-vascular system.  Researchers are also concerned about known weakening of bone and muscle tissue, harming vision, as well as speeded-up aging during long stays in space.

With current technology, it would take about three years to travel from Earth to Mars, orbit the planet until it is in the right place for a sling-shot boost home, and then to travel back.

A radiation detection instrument on the Mars Science Laboratory (MSL),  which carried the rover Curiosity to Mars in 2011-2012, measured an estimated overall human radiation exposure for a Mars trip that would would be two-thirds of the agency’s allowed lifetime limits.  That was based on the high-energy radiation hitting the capsule, but NASA later detected radiation bursts from solar flares on Mars far higher than anything detected during the MSL transit.

All of this seems, and is, quite daunting when thinking about human travel to Mars and other deep space destinations.  And Datta is clearly sensitive about how the new results are conveyed to the public.

“I am in no way saying that people cannot travel to Mars,” he told me. “What we are doing is trying to understand the health risks so proper mitigation can be devised, not to say this kind of travel is impossible.”

“We don’t have medicines now to protect astronauts from heavy particle radiation, and we don’t have the technology now to shield them while they’re in space.  But many people are working on these problems.”

 

The Orion spacecraft in flight, as drawn by an artist. The capsule has an attached habitat module. (NASA)

 

On the medical research side, scientists have to rely on data gained from exposing mice to radiation and extrapolating those results to humans.  It would, of course, be unethical to do the testing on people.

While this kind of animal testing is accepted as generally accurate, it certainly could hide either increased protections or increased risks in humans.

Datta said that another testing issue that has been present so far is that the mice have had to be irradiated in one large dose rather than in much smaller doses over time.  It is unclear how that effects the potential damage to human organs and the breaking of DNA bonds (which can result in the growth of cancers.)  But Datta said that new instruments at NASA’s Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory on Long Island, New York, will allow for a more gradual, lower-dose experiment.

While Datta’s work has been focused on the health risks of deep space travel, galactic cosmic radiation and solar heavy particles also bombard the moon — which has no magnetic field and only a very thin atmosphere to protect it.  Apollo astronauts could safely stay on the moon for several days in their suits and their lander, but months or years of living in a colony there would pose far greater risks.

NASA has actually funded projects to shield small areas on the moon from radiation, but the issue remains very much unresolved.

Shielding also plays a major role in thinking about how to protect astronauts traveling into deep space.  The current aluminum skin of space capsules allows much of the harmful radiation to pass through, and so something is needed to block it.

 

The goal of building an inhabited colony on the moon has many avid supporters in government and the private sector. The health risks for astronauts are similar to those in deep space. (NASA/Pat Rawlings)

 

Experts have concluded that perhaps the best barrier to radiation would be a layer of water, but it is too heavy to carry in the needed amounts.  Other possibilities include organic polymers (large macromolecules with repeating subunits) such as polyethelyne.

It seems clear that issues such as these — the effects of more hazardous space radiation on astronauts in deep space and on the moon, and how to minimize those dangers — will be coming to the front burner in the years ahead.  And assuming that progress can be made, it’s a thrilling time.

What this means for space science, however, is less clear.

On one hand I recall hearing former astronaut extraordinaire and then head of the NASA Science Mission Directorate John Grunsfeld talk about how an astronaut on Mars could gather data and understandings in one week that the Curiosity rover would need a full year to match.

On the other, human space exploration is much more expensive than anything without people — yes, even including the long-delayed and ever-more-costly James Webb Space Telescope — and NASA budgets are limited.

So the question arises whether human exploration will, when it gets into high gear, swallow up the resources needed for the successors to the Hubble, Curiosity, Cassini and the other missions that have helped create what I consider to be a golden age of space science.  Risks come in many forms.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Curiosity Rover Looks Around Full Circle And Sees A Once Habitable World Through The Dust

Facebooktwittergoogle_plusredditpinterestlinkedinmail

An annotated 360-degree view from the Curiosity mast camera.  Dust remaining from an enormous recent storm can be seen on the platform and in the sky.  And holes in the tires speak of the rough terrain Curiosity has traveled, but now avoids whenever possible. Make the screen bigger for best results and enjoy the show. (NASA/JPL-Caltech/MSSS)

 

When it comes to the search for life beyond Earth, I think it would be hard to point to a body more captivating, and certainly more studied, than Mars.

The Curiosity rover team concluded fairly early in its six-year mission on the planet that “habitable” conditions existed on early Mars.  That finding came from the indisputable presence of substantial amounts of liquid water three-billion-plus years ago, of oxidizing and reducing molecules that could provide energy for simple life, of organic compounds and of an atmosphere that was thick enough to block some of the most harmful incoming cosmic rays.

Last year, Curiosity scientists estimated that the window for a habitable Mars was some 700 million years, from 3.8 to 3.1 billion years ago.  Is it a coincidence that the earliest confirmed life on Earth appeared about 3.8 billion years ago?

Today’s frigid Mars, which has an atmosphere much thinner than in the planet’s early days, hardly looks inviting, although some scientists do see a possibility that primitive life survives below the surface.

But because it doesn’t look inviting now doesn’t mean the signs of a very different planet aren’t visible and detectable through instruments.  The Curiosity mission has proven this once and for all.

The just released and compelling 360-degree look (above) at the area including Vera Rubin Ridge brings the message home.

Those fractured, flat rocks are mudstone, formed when Gale Crater was home to Gale Lake.  Mudstone and other sedimentary formations have been visible (and sometimes drilled) along a fair amount of the 12.26-mile path that Curiosity has traveled since touchdown.

 

An image of Vera Rubin Ridge in traditional Curiosity color, and the same view below with filters designed to detect hematite, or iron oxide. That compound can only be formed in the presence of water. (NASA/JPL-Caltech)

 

The area the rover is now exploring contains enough hematite — iron oxide — that its signal was detectable from far above the planet, making this area a prized destination since well before the Mars Science Laboratory and Curiosity were launched.

Like Martian clays and sulfates that have been identified and explored, the hematite is of great interest because of its origins in water.  Without H2O present many eons ago, there would be no hematite, no clay, no sulfates.  But as Mars researchers have found, there is a lot of all three.

I like to return to Mars and especially Curiosity because it provides something unique in the cosmos:  an environment where scientists today have ground-truthed the hypothesis that early Mars was once habitable, and found unambiguous results that it was.

That doesn’t mean that the planet necessarily ever gave rise to, or supported, living organisms.  But it’s a lot more than can be said for other targets for life beyond Earth.

NASA’s Europa Clipper may determine some day that beneath the ice crust of that moon of Jupiter is an ocean that is, or was, habitable.  But that determination is still years away.  Same with Saturn’s moon Enceladus, which some see as habitable beneath its ice, but no mission is currently approved to determine that.

And when it comes to exoplanets and possible life on them, it is both a logical and alluring conclusion that some support living organisms — there are, after all, billions and billions of exoplanets, and the cosmos is filled with the elements and compounds we find on Earth.

But we remain quite far away from consensus on what an exoplanet biosignature might be, and much further away from being able to confidently detect the probable biosignature elements and compounds on distant exoplanets.

And so for now we have Mars as our most plausible target for life beyond Earth.

 

Vera Rubin Ridge, with its high concentration of both red and green hematite. (NASA/JPL-Caltech)

 

It wasn’t that long ago that the NASA exploration mantra for Mars was “follow the water,”  under the assumption that life needed water to survive.

But Curiosity and satellites orbiting Mars have found abundant proof that water did play a major role in the planet’s early times.  Not only has Curiosity found that a lake existed on and off for hundreds of millions of years at Gale Crater, but researchers recently announced the presence of a large reservoir of liquid water beneath the southern polar region.

What’s more, evidence of briny surface streams on steep Martian cliffs in their warm season has grown stronger, though it remains a much-debated finding.

But with the water story well established, researchers are focused more on organics, minerals and what can be found beneath the radiation-baked surface.

Curiosity has been working for months around Vera Rubin Ridge, though for much of that time with a big handicap — the rover’s long-armed drill wasn’t working.  Important internal mechanisms stopped performing in late 2016, and it wasn’t until late spring of 2018 that a workaround was ready.

After one successful drilling, the next two failed.  But there was no drill problem with those two; the rock on the ridge was just too hard to penetrate.  It makes sense that the rock would be very hard because it has withstood millions of years of powerful winds blowing across Gale Crater, while other nearby rock and sediments were carried away.

The best way to discover why these rocks are so hard is to drill them into a powder for the rover’s two internal laboratories. Analyzing them might reveal what’s acting as “cement” in the ridge, enabling it to stand despite wind erosion.

Most likely, said Curiosity project scientist Ashin Vasavada, groundwater flowing through the ridge in the ancient past had a role in strengthening it, perhaps acting as plumbing to distribute this wind-proofing “cement.” In this case, it would be some variation of hematite, which in crystal form can be pretty hard on its own.

On its third attempt — and after a prolonged search for a “soft” spot in the ridge — the Curiosity drill did succeed in digging a hole and bringing back some precious powdered contents for study in the two onboard labs.

After the exploration of Vera Rubin Ridge and its hematite will come explorations of large deposits of sulfates and phyllosilicates (clays) — both formed in water as well — further up Mt. Sharp.

 

Curiosity’s pathway over the past six years, from near the Bradbury Landing site to the successful drilling at Vera Rubin Ridge. The route has gone through fossil lake beds, dune fields, the underlying rock formation of Mt. Sharp and now up to the hematite concentrations. (NASA/JPL=Calgtech)

 

I find the landscape of Mars that Curiosity shows us to be captivating, but also sobering when it comes to the search for life beyond Earth.

Here is the planet closest to Earth (during some orbits, at least), one that has been determined to be habitable 3 to 4 billion years ago,  one that can be studied with rovers on the ground and orbiting satellites — and still we can’t determine if it ever actually supported life, and probably won’t be able to for decades to come.

The big confounding factor on Mars really is time.  Life could have come and gone billions of years ago, and intense surface radiation could have erased that history and made it appear as if life was never there.  (This is one reason why Mars scientists want to dig deeper below the surface, where the effects of radiation would be much reduced.)

Time may be a powerful obstacle when it comes finding signs of life on exoplanets as well.  If life exists elsewhere in the cosmos, it surely comes and goes, too.  The odds of us catching it when it’s present may be low, despite all those billions and billions of planets. (Given the way that exoplanet biosignatures work, the life needs to be present at the time of observation.)

Or maybe the time for life in the cosmos has really just begun.

Harvard-Smithsonian astrophysicist Avi Loeb argued several years ago that life on Earth may be a premature flowering, compared with what may well happen later and elsewhere. (Column on his intriguing ideas is here.)

A majority of stars in the cosmos are red dwarfs, or M stars.  They take eons to stabilize and then generally continue in a steady state for much longer than a G star like our sun.  So, he argued,  life in the cosmos around red dwarfs may not become widespread for some time, and then could last for a very long time if and when it did arise.

But enough about time — other than to perhaps take a little more time to enjoy the 360-degree view of Mars and Curiosity that brings thoughts like these to mind.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

15,000 Galaxies in One Image

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Astronomers have just assembled one of the most comprehensive portraits yet of the universe’s evolutionary history, based on a broad spectrum of observations by the Hubble Space Telescope and other space and ground-based telescopes.  Each of the approximately 15,000 specks and spirals are galaxies, widely distributed in time and space. (NASA, ESA, P. Oesch of the University of Geneva, and M. Montes of the University of New South Wales)

Here’s an image to fire your imagination: Fifteen thousand galaxies in one picture — sources of light detectable today that were generated as much as 11 billion years ago.

Of those 15,000 galaxies, some 12,000 are inferred to be in the process of forming stars.  That’s hardly surprising because the period around 11 billions years ago has been determined to be the prime star-forming period in the history of the universe.  That means for the oldest galaxies in the image, we’re seeing light that left its galaxy but three billion years after the Big Bang.

This photo mosaic, put together from images taken by the Hubble Space Telescope and other space and ground-based telescopes, does not capture the earliest galaxies detected. That designation belongs to a galaxy found in 2016 that was 420 million years old at the time it sent out the photons just collected. (Photo below.)

Nor is it quite as visually dramatic as the iconic Ultra Deep Field image produced by NASA in 2014. (Photo below as well.)

But this image is one of the most comprehensive yet of the history of the evolution of the universe, presenting galaxy light coming to us over a timeline up to those 11 billion years.  The image was released last week by NASA and supports an earlier paper in The Astrophysical Journal by Pascal Oesch of Geneva University and a large team of others.

And it shows, yet again, the incomprehensible vastness of the forest in which we are a tiny leaf.

Some people apparently find our physical insignificance in the universe to be unsettling.  I find it mind-opening and thrilling — that we now have the capability to not only speculate about our place in this enormity, but to begin to understand it as well.

The Ultra-Deep field composite, which contains approximately 10,000 galaxies.  The images were collected over a nine-year period.  {NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)} 

For those unsettled by the first image, here is the 2014 Ultra Deep Field image, which is 1/14 times the area of the newest image.  More of the shapes in this photo look to our eyes like they could be galaxies, but those in the first image are essentially the same.

In both images, astronomers used the ultraviolet capabilities of the Hubble, which is now in its 28th year of operation.

Because Earth’s atmosphere filters out much ultraviolet light, the space-based Hubble has a huge advantage because it can avoid that diminishing of ultraviolet light and provide the most sensitive ultraviolet observations possible.

That capability, combined with infrared and visible-light data from Hubble and other space and ground-based telescopes, allows astronomers to assemble these ultra deep space images and to gain a better understanding of how nearby galaxies grew from small clumps of hot, young stars long ago.

The light from distant star-forming regions in remote galaxies started out as ultraviolet. However, the expansion of the universe has shifted the light into infrared wavelengths.

These images, then,  straddle the gap between the very distant galaxies, which can only be viewed in infrared light, and closer galaxies which can be seen across a broad spectrum of wavelengths.

The farthest away galaxy discovered so far is called GN-z11 and is seen now as it was 13.4 billion years in the past.  That’s  just 400 million years after the Big Bang.

GN-z11 is surprisingly bright infant galaxy located in the direction of the constellation of Ursa Major. Thus NASA video explains much more:

The farthest away galaxy ever detected — GN-z11. {NASA, ESA, P. Oesch (Yale University, Geneva University), G. Brammer (STScI), P. van Dokkum (Yale University), and G. Illingworth (University of California, Santa Cruz)} 

 

Galaxy formation chronology, showing GN-z11 in context. Hubble spectroscopically confirmed the farthest away galaxy to date. {NASA, ESA, P. Oesch and B. Robertson (University of California, Santa Cruz), and A. Feild (STScI)}

In addition representing cutting-edge science — and enabling much more — these looks into the most distant cosmic past offer a taste of what the James Webb Space Telescope, now scheduled to launch in 2021, is designed to explore.  It will have greatly enhanced capabilities to explore in the infrared, which will advance ultra-deep space observing.

But putting aside the cosmic mysteries that ultra deep space and time astronomy can potentially solve, the images available today from Hubble and other telescopes are already more than enough to fire the imagination about what is out there and what might have been out there some millions or billions of years ago.

A consensus of exoplanet scientists holds that each star in the Milky Way galaxy is likely to have at least one planet circling it, and our galaxy alone has billions and billions of stars.  That makes for a lot of planets that just might orbit at the right distance from its host star to support life and potentially have atmospheric, surface and subsurface conditions that would be supportive as well.

A look these deep space images raises the question of how many of them also house stars with orbiting planets, and the answer is probably many of them.  All the exoplanets identified so far are in the Milky Way, except for one set of four so far.

Their discovery was reported earlier this year by Xinyu Dai, an astronomer at the University of Oklahoma, and his co-author, Eduardo Guerras.  They came across what they report are planets while using NASA’s Chandra X-ray Observatory to study the environment around a supermassive black hole in the center of a galaxy located 3.8 billion light-years away from Earth.

In The Astrophysical Journal Letters , the authors report the galaxy is home to a quasar, an extremely bright source of light thought to be created when a very large black hole accelerates material around it. But the researchers said the results of their study indicated the presence of planets in a galaxy that lies between Earth and the quasar.

Furthermore, the scientists said results suggest that in most galaxies there are hundreds of free-floating planets for every star, in addition to those which might orbit a star.

The takeaway for me, as someone who has long reported on astrobiology and exoplanets, is that it is highly improbable that there are no other planets out there where life occurs, or once occurred.

As these images make clear, the number of planets that exist or have existed in the universe is essentially infinite.  That no others harbor life seems near impossible.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Large Reservoir of Liquid Water Found Deep Below the Surface of Mars

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Artist impression of the Mars Express spacecraft probing the southern hemisphere of Mars, superimposed on a radar cross section of the southern polar layered deposits. The leftmost white line is the radar echo from the Martian surface, while the light blue spots are highlighted radar echoes along the bottom of the ice.  Those highlighted areas measure very high reflectivity, interpreted as being caused by the presence of water. (ESA, INAF. Graphic rendering by Davide Coero Borga )

Far beneath the frigid surface of the South Pole of Mars is probably the last place where you might expect the first large body of Martian liquid water would be found.  It’s -170 F on the surface, there are no known geothermal sources that could warm the subterranean ice to make a meltwater lake, and the liquid water is calculated to be more than a mile below the surface.

Yet signs of that liquid water are what a team of Italian scientists detected — a finding that they say strongly suggests that there are other underground lakes and streams below the surface of Mars.  In a Science journal article released today, the scientists described the subterranean lake they found as being about 20 kilometers in diameter.

The detection adds significantly to the long-studied and long-debated question of how much surface water was once on Mars, a subject that has major implications for the question of whether life ever existed on the planet.

Finding the subterranean lake points to not only a wetter early Mars, said co-author Enrico Flamini of the Italian space agency, but also to a Mars that had a water cycle that collected and delivered the liquid water.  That would mean the presence of clouds, rain, evaporation, rivers, lakes and water to seep through surface cracks and pool underground.

Scientists have found many fossil waterways on Mars, minerals that can only be formed in the presence of water, and what might be the site of an ancient ocean.

But in terms of liquid water now on the planet, the record is thin.  Drops of water collected on the leg of NASA’s Phoenix Lander after it touched down in 2008, and what some have described as briny water appears to be flowing down some steep slopes in summertime.  Called recurrent slope lineae or RSLs, they appear at numerous locations when the temperatures rise and disappear when they drop.

This lake is different, however, and its detection is a major step forward in understanding the history of Mars.

Color photo mosaic of a portion of Planum Australe on Mars.  The subsurface reflective echo power is color coded and deep blue corresponds to the strongest reflections, which are interpreted as being caused by the presence of water. (USGS Astrogeology Science Center, Arizona State University, INAF)

The discovery was made analyzing echoes captured by the the radar instruments on the European Space Agency’s Mars Express, a satellite orbiting the planet since 2002.  The data for this discovery was collected from observation made between 2012 and 2015.

 

A schematic of how scientists used radar to find what they interpret to be liquid water beneath the surface of Mars. (ESA)

Antarctic researchers have long used radar on aircraft to search for lakes beneath the thick glaciers and ice layers,  and have found several hundred.  The largest is Lake Vostok, which is the sixth largest lake on Earth in terms of volume of water.  And it is two miles below the coldest spot on Earth.

So looking for a liquid lake below the southern pole of Mars wasn’t so peculiar after all.  In fact, lead author Roberto Orosei of the Institute of Radioastronomy of Bologna, Italy said that it was the ability to detect subsurface water beneath the ice of Antarctica and Greenland that helped inspire the team to look at Mars.

There are a number of ways to keep water liquid in the deep subsurface even when it is surrounded by ice.  As described by the Italian team and an accompanying Science Perspective article by Anja Diez of the Norwegian Polar Institute, the enormous pressure of the ice lowers the freezing point of water substantially.

Added to that pressure on Mars is the known presence of many salts, that the authors propose mix with the water to form a brine that lowers the freezing point further.

So the conditions are present for additional lakes and streams on Mars.  And according to Flamini, solar system exploration manager for the Italian space agency, the team is confident there are more and some of them larger than the one detected.  Finding them, however, is a difficult process and may be beyond the capabilities of the radar equipment now orbiting Mars.

 

Subsurface lakes and rivers in Antarctica. Now at least one similar lake has been found under the southern polar region of Mars. (NASA/JPL)

The view that subsurface water is present on Mars is hardly new.  Stephen Clifford, for many years a staff scientist at the Lunar and Planetary Institute, even wrote in 1987 that there could be liquid water at the base of the Martian poles due to the kind of high pressure environments he had studied in Greenland and Antarctica.

So you can imagine how gratifying it might be to learn, as he put it “of some evidence that shows that early theoretical work has some actual connection to reality.”

He considers the new findings to be “persuasive, but not definitive” — needing confirmation with other instruments.

Clifford’s wait has been long, indeed.  Many observations by teams using myriad instruments over the years did not produce the results of the Italian team.

Their discovery of liquid water is based on receiving particularly strong radar echoes from the base of the southern polar ice — echoes consistent with the higher radar reflectivity of water (as opposed to ice or rock.)

After analyzing the data in some novels ways and going through the many possible explanations other than the presence of a lake, Orosei said that none fit the results they had.  The explanation, then, was clear:  “We have to conclude there is liquid water on Mars.”

The depth of the lake — the distance from top to bottom — was impossible to measure, though the team concluded it was at least one meter and perhaps in the tens of meters.

Might the lake be a habitable?  Orosei said that because of the high salt levels “this is not a very pleasant environment for life.”

But who knows?  As he pointed out, Lake Vostok and other subglacial Antarctic lake, are known to be home to single-cell organisms that not only survive in their very salty world, but use the salt as part of their essential metabolism.

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail