Time-Traveling in the Australian Outback in Search of Early Earth

Facebooktwittergoogle_plusredditpinterestlinkedinmail

This story was written by Nicholas Siegler, Chief Technologist for NASA’s Exoplanet Exploration Program at the Jet Propulsion Laboratory with the help of doctoral student Markus Gogouvitis, at the University of New South Wales, Australia and Georg-August-University in Gottingen, Germany.

 

These living stromatolites at Shark Bay, Australia are descendants of similar microbial/sedimentary forms once common around the world.  They are among the oldest known repositories of life.  Most stromatolites died off long ago, but remain at Shark Bay because of the high salinity of the water. (Tourism, Western Australia)

 

This past July I joined a group of geologists, geochemists, microbiologists, and fellow astronomers on a tour of some of the best-preserved evidence for early life.

Entitled the Astrobiology Grand Tour, it was a trip led by Dr. Martin Van Kranendonk, a structural geologist from the University of New South Wales, who had spent more than 25 years surveying Australia’s Pilbara region. Along with his graduate students he had organized a ten-day excursion deep into the outback of Western Australia to visit some of astrobiology’s most renowned sites.

The trip would entail long, hot days of hiking through unmaintained trails on loose surface rocks covered by barb-like bushes called spinifex.  As I was to find out, nature was not going to give up its secrets easily.  And there were no special privileges allocated to astrophysicists from New Jersey.

 

The route of our journey back in time.  (Google Earth/Markus Gogouvitis /Martin Van Kranendonk)

The state of Western Australia, almost four times the size of the American state of Texas but with less than a tenth of the population (2.6 million), is the site of many of astrobiology’s most heralded sites. For more than three billion years, it has been one of the most stable geologic regions in the world.

It has been ideal for geological preservation due to its arid conditions, lack of tectonic movement, and remoteness. The rock records have in many places survived and are now able to tell their stories (to those who know how to listen).

 

The classic red rocks of the Pilbara in Western Australia, with the needle sharp spinifex bushes in the foreground. (Nick Siegler, NASA/JPL-Caltech)

Our trip began with what felt like a pilgrimage. We left Western Australia’s largest city Perth and headed north for Shark bsy. It felt a bit like a pilgrimage because the next morning we visited one of modern astrobiology’s highlights – the living stromatolites of Shark Bay.

Stromatolites literally mean “layered rocks”. It’s not the rocks that are alive but rather the community of microbial mats living on top. They are some of the Earth’s earliest ecosystems.

We gazed over these living microbial communities aloft on their rock perches and marveled at their exceptional longevity — the species has persisted for over three billion years. Their ancestors had survived global mass extinctions, planet-covering ice glaciers, volcanic activity, and all sorts of predators. Once these life forms took hold they were not going to let go.

 

The stromatolites forming today in the shallow waters of Shark Bay, Australia are built by colonies of microbes that capture ocean sediments. (University of Wisconsin-Madison)

The photosynthetic bacteria that built ancient stromatolites played a central role of our trip for three reasons:

  • Their geological footprints allowed scientists to date the evolution of early life and at times gain insight into the environments in which they grew.
  • They eventually harbored the first oxygen-producing bacteria and played a central role in creating our oxygen-rich atmosphere.
  • By locating ever-increasingly older microbial fossils we observed a lower limit to the age of the first life forms.. Given photosynthesis is not a simple process, the first life forms must have been simpler. Speculating, perhaps a few hundred million years earlier so that the first life form on Earth may have originated at four billion years ago.

When viewed under a microscope, you can see the mats are made of millions of single cell bacteria and archaea, among the simplest life forms we know. Within these relatively thin regions are multiple layers of specialized microbial communities that live interdependently.

Bacteria in the top layer evolved to harvest sunlight to live and grow via photosynthesis. Their waste products include oxygen as well as important nutrients for many different bacterial species within underlying layers. And this underlying layer’s waste product would do the same for the layer beneath it, perfectly recycling each other’s waste. The oldest forms of life that we know of had learned to co-exist together in a chemically interdependent environment.

 

Broken piece of a living stromatolite, which was was remarkably spongy and smelled slightly salty, indicative of the hypersaline bay that has contributed to their survival by making bacteria and other organisms undesirable. What was actually most remarkable of the visit to Hamelin pool was how quiet it was. There were no seagulls and other birds because of the hypersaline environment. They had gone elsewhere for their meals. (Nick Siegler, NASA/JPL-Caltech)

 

We saw ripped up portions of the mats that washed upon the shore at Hamelin pool in Shark Bay. A whole ecosystem held in one’s hand. Thousands of millions of years ago ancient relatives of these microbes thrived in shallow waters all around our planet, and left behind fossilized remains. But due to the evolution of grazing organisms these microbial structures are nowadays constrained to very specific environments. In the case of Shark Bay, the very high salt contents of this inlet have warded off most predators providing the microbes with a safe haven to live.

Ironically, the rocks, which help identify these ancient life forms, at the time were just a nuisance for the living microbes.

Small fine grains of sedimentary rock carried along in the daily tides would occasionally get stuck in the sticky mucus the microbes would secrete. In addition, the photosynthetic bacteria found at Shark Bay may have been inadvertently making their own rock by depleting the carbon dioxide in the surrounding water as part of photosynthesis and precipitating carbonate, adding to the grains of sediment trapped within the sticky top layer.

Over time, the grains from both the sedimentary and precipitated rocks would  cover the surface and block the sunlight for which these organisms had evolved to depend on. As an evolutionary tour de force, the photosynthetic microbes learned to migrate upward, leaving the newly formed rock layers behind.

These secondary rock fossils today showcase visually observable crinkly, frequently conical shapes, in stark contrast to abiotic sedimentary rocks. These ancient life forms left behind geological footprints reminding us they were here first.

Nick Siegler of JPL on his Australian Magical Origins Tour.  (Markus Gogouvitis)

Now to the most important contribution of stromatolites – terraforming the Earth.

Living in shallow water, the top most layer of the Shark Bay microbial mats are known to host cyanobacteria, photosynthetic bacteria that produce oxygen as a byproduct. Scientists don’t know what the first bacteria produced as they harnessed the energy of the Sun. But they do know that they eventually started producing oxygen.

In the evolution of life that eventually led to all plants and animals, this was one of the great events. More than 2.5 billion years ago, ancient bacteria began diligently producing oxygen in the oceans. Earth’s atmosphere began to irreversibly shift from its original, oxygen-free existence, to an oxic one, initiating the formation of our ozone layer and paving the way for the evolution of more complex life. Our planet has been terraformed by micro-organisms!

It was in the Karijini National Park where we went back in time (2.4 billion years) and observed an extraordinary piece of evidence for the early production of oxygen in Earth’s oceans, a time before oxygen made a strong presence in our atmosphere.

 

Banded iron formation at Karajini National Park.  (Nick Siegler, NASA-JPL/Caltech)

 

We saw a massive gorge with steep vertical walls carved out by flowing water. As oxygen production by early bacteria increased below the water surface it would react with dissolved iron ions (early oceans were iron-rich) causing iron oxides to precipitate and settle to the bottom.

For reasons not entirely understood — perhaps related to seasonal or temperature effects– the amount of new oxygen temporarily decreased and iron ion remained soluble in the oceans and other types of sediments accumulated, carbonates, slate, and shale. And then, just as before, the oxygen reappeared creating a new layer of precipitated iron.

The result was a banded sedimentary rock, a litmus test to a changing world, where oxygen would be the reactive ingredient leading to larger and more complex life forms. As the oxygen production no longer cycled, the oxygen went on to saturate the ocean and then accumulated in the Earth’s atmosphere eventually to the levels we have today.

 

Banded iron formation at Karajini. (Nick Siegler, NASA-JPL/Caltech)

After a day of looking down at rocks and spinifex it was both a relief and a joy to look up at the glorious Western Australian night sky. Far away from the light pollution of modern cities, each night would greet us with an awe-inspiring starlit sky. It never got old to remember we are part of a vast network of stars suspended in an infinite space.

The nights would start with the appearance of Venus well before sundown followed shortly by the innermost planet Mercury and then Jupiter and Saturn. It didn’t take long after sunset to see the renowned Southern Cross. Mars joined the evening as well, perfectly appearing on the arc called the ecliptic.

But nothing stirred the group more than the emergence of the swath of stars of the Milky Way, the disk of our home galaxy where its spiral arms all lie. The nights would be so clear that one could actually see the dark clouds of gas and dust that block large portions of the galaxy’s stars from shining through. We partook in the well-known tradition connecting individual points of light to form exotic creatures like scorpions and centaurs. But we also we followed the inverted approach of the Aborigines and connected the dark patches. Only then did we see the emu of the Milky Way. I would never have thought of connecting the darkness.

 

Australian night sky, with campfire below.  (Maëva Millan/NASA-GSFC/Georgetown University)

The night sky appeared even more special knowing that each of its stellar members likely host planetary systems like our own. How many of them host life? Maybe even civilizations? The numbers are in their favor.

At the half-way point of our trip we hiked to an ancient granite region in the red rocks of the Pilbara which contain the world’s largest concentration of Pleistocene rock art also known as petroglyphs. These etchings are believed to be 6,000 to 20, 000 years old.

The artists used no pigments, but rather rocks to pound/chisel shapes into the desert varnish, a thin dark film (possibly of microbial origin) that typically covers exposed rock surfaces in hyper arid regions. We came across many stylized male and female figures with highlighted genitalia as well as animals such as emus and kangaroos. Little is known about the people who created these art works. They left no clues to their origin or fate.

 

Rock art by aboriginal people done 6,000 to 20,000 years ago. The shapes were etched into an existing varnish on the rock. (Nick Siegler, NASA-JPL/Caltech)

Pilbara is also where the oldest mineral on Earth –a zircon dated at 4.4 billion years old — was discovered four years ago in the Jack Hills region.  Because of the geological history of the region, it is a frequent (if hardscrabble) site where many geologists and geochemists specializing in ancient Earth do their work.

In the last several days of the tour we encountered ever-increasing older evidence of stromatolites extending out to circa 3.5 billion years, about 75% of the history of the Earth. I expected the quality of the stromatolites to degrade as we went back in time and it looked like I was right until I saw a remarkably large rock in a locality called the Strelley Pool Formation. The rock measuring approximately 1.5 meters in all three directions gave a rare view of ancient stromatolites from all sides and an unequivocal interpretation of past life.

Large and ancient fossil stromatolite at the Strelley Pool Formation, with Siegler and Gogouvitis.  (Nick Siegler, NASA-JPL/Caltech)

The shapes of the embedded rocks formed by the microbial mats from the top view clearly show the elliptical areas where the bacteria inched upwards to acquire sunlight. Regions between the conical stromatolites were filled in by carbonate sediments in ancient shallow waters. These were later chemically altered to silica-rich rocks through alteration and etching of minerals by fluids. Silicified rocks are very weather-resistant, making them a great medium to preserve fossils for billions of years.

The side views of the stromatolite-laden rock revealed the expected conical layered shapes we saw in younger rocks (and in the living stromatolites of Shark Bay). Everything we had learned about stromatolite structures was clearly visible in this circa 3.43 billion year old example. It is astounding to realize that complex phototrophic (light-eating) organisms, even if not yet oxygen producing, were around during the deposition of the Strelley Pool Formation.

 

Detail of Strelley Pool stromatolite fossil.  (Nick Siegler, NASA-JPL/Caltech)

It is not unreasonable to speculate that the earliest life forms are even older by perhaps a few more hundred million years or so. There is evidence for even more ancient stromatolites in Greenland (3.7 billion years old) and isotope carbon evidence, with considerable controversy, in Nuvvuagittuq greenstone belt in northern Quebec, Canada (4.28 billion years old). Hence, life on Earth may have emerged within 500 million years from its formation. That is astonishingly rapid.

Was Earth an exception or the rule? What does that say for possible life on exoplanets?

Our tour came to an end on July 11. We had traveled over 1,600 miles through Australia’s outback, from Western Australia’s biggest city Perth, all the way up to Port Hedland at the north coast. We were privileged to see the country in ways that very few people get a chance to, and to be steeped in the multidisciplinary sciences of astrobiology while seeing some of its iconic ground.

I had seen some of the earliest evidence for life and the pivotal effect it had on our environment. For those 10 days I learned what it was like to be a time traveler.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Piecing Together The Narrative of Evolution

Facebooktwittergoogle_plusredditpinterestlinkedinmail
A reconstruction of the frond-like sea creature Stromatoveris psygmoglena, which lived during the Cambrian explosion of life forms on Earth.  Newfound fossils of Stromatoveris were compared with Ediacaran fossils, and researchers concluded they were all very early animals and that this animal group survived the mass extinction event that occurred between the Ediacaran and Cambrian periods. (Jennifer Hoyal Cuthill.)

An essential characteristic of life is that it evolves. Whether on Earth or potentially Mars, Europa or distant exoplanets, we can assume that whatever life might be present has the capacity and the need to change.

Evolution is intimately tied to the origin-of-life question, which this column often explores.  Having more answers regarding how life might have started on Earth can no doubt help the search for life elsewhere, just as finding life elsewhere could help understand how it started here.

The connection between evolution and exoplanets has an added and essential dimension when it comes to hunting for signatures of distant extraterrestrial life.

Searching for a planet with lots of oxygen and other atmospheric compound in disequilibrium (as on Earth) is certainly a way forward. But it is sobering to realize that those biosignatures would not have been detectable on Earth for most of the time that life has been present.  That’s because large concentrations of oxygen are a relative newcomer to our planet,  product of biological evolution.

With all this in mind, it seems both interesting and useful to look at the work of a researcher studying the fossil record to better understand a particular transition on Earth — the one from simpler organisms to multicellular creatures that can be considered animals.

The surprising, large transitional life of the Ediacaran period, which just preceded the Cambrian explosion of complex life. This grouping is termed the Ediacara assemblage, and existed late in the period.  (John Sibbick)

The researcher is Jennifer Hoyal Cuthill of the University of Cambridge, who I first met at the Earth-Life Science Institute in Tokyo, a unique place where scientists research the origin of Earth and of life on Earth.

She had been included in a group of twelve two-year fellows recruited from around the world who specialized in fields ranging from the microbiology of extreme environments to the current and past dynamics of the deep Earth and the digital world of chemo informatics.  And then there was Hoyal Cuthill, whose field is paleobiology, with a heavy emphasis on evolution.

Now Hoyal Cuthill has published a paper in the journal Paleontology that describes findings in the fossil record that shed light on that transition from less complex organisms like bacteria, algae and fungi to  to animals.

Her specialty is the Ediacaran period some 635 to 541 million years ago.  This transitional period came after a snowball Earth event and was followed by the Cambrian explosion, when ocean life of all sorts grew and changed at an unprecedented rate.  But as she and others have found, the Ediacaran also had large and unique lifeforms, and she is working to make sense of them.

She described her work and findings more specifically as follows:

“When did animals originate? What were the bizarre, early fossils known as the Ediacaran biota?

“We show that both questions are answered by a frond-like sea creature called Stromatoveris psygmoglena known from exceptionally preserved, Cambrian fossils from Chengjiang County, China.

“Originally described from only eight specimens, we examined over 200 new fossils since discovered by researchers from Northwest University (in Xian.) Stromatoveris was compared to earlier Ediacaran fossils in a computer analysis of anatomy and evolutionary relationships.

“This showed that Stromatoveris and seven key members of the Ediacaran biota share detailed anatomical similarities, including multiple, radiating, branched fronds that unite them as a phylum of early animals, originating by the Ediacaran Period and surviving into the early Cambrian.”

Fossil of Stromatoveris psygmoglena, turned on its side.  New research suggests that Stromatoveris and related Ediacaran lifeforms could be among the earliest creatures that can be described as an animal. Ediacaran fossils have been found from Australia to arctic Siberia, Canada to southern Africa.  (Jennifer Hoyal Cuthill)

 

Dickinsonia is a genus of iconic fossils of the Ediacaran biota. While a bilaterian affinity had been previously suggested by some researchers, this study suggests that it is closely related to other members of the Ediacaran biota as well as Cambrian Stromatoveris.  (Jennifer Hoyal Cuthill)

 

More broadly, Hoyal Cuthill told me that “the story of the origin of life and the evolution of life are so interwoven.”

“Looking back as far as we can, we see important patterns emerging from the very start.  All things learn.  If possible, they add to complexity… And evolution does not result in a complete replacement.  When transitions happen -– even big ones – important life patterns continue.  And so do some creatures.”

This continuity within change is what she has focused on, in the transitional Proterozoic Eon when bacterial and plant life evolved into the more complex ocean animal life of the Cambrian explosion.

She has traveled the world and scoured the fossil record to come up with this conclusion:  that creatures that can be called “animals” existed at least as far back as the early days of the Ediacaran, some 630 million years ago, when many macro-fossils quite suddenly appeared following that early epoch of global freezing.

The Ediacaran period gets its name from the Ediacara Hills in Australia, where famous fossils of this age were found. Known also as the Vendian, the Ediacaran was the final stage of Pre-Cambrian time. During this time, large (up to meter-sized) organisms, often shaped like fronds with holdfast discs, lived on thick mats of bacteria which, unlike today, coated the sea floor. The slimy mats acted as a barrier between the water above and the sediments below, preventing oxygen from reaching under the sea floor and making it less habitable.

During this time, large (up to meter-sized) organisms, often shaped like discs or fronds,  lived on or in shallow horizontal burrows beneath thick mats of bacteria which, unlike today, coated the sea floor. The slimy mats acted as a barrier between the water above and the sediments below, preventing oxygen from reaching under the sea floor and turning it largely uninhabitable.

And then when the Cambrian explosion occurred beginning some 540 million years ago, most of those lifeforms were thought to have gone extinct. Some paleobiologists hold that Earth’s first mass extinction actually took place during this period, when newly evolved animals transformed the environment.

Biota from the Ediacaran period through the Cambrian explosion. (Proceedings of the Royal Academy; B M. Gabriela Mángano, Luis A. Buatois)

Hoyal Cuthill says that her research leads her to a very different view: that there was a broad but not mass extinction, and that Ediacaran animals survived well after the Cambrian Explosion.

And in the journal paper published this week, Hoyal Cuthill and co-author Jian Han of Northwest University in Xian present fossil evidence from southern China of Cambrian creatures that she argues are unquestionably animal.

She said they have characteristics such as radial symmetry, differentiated bodies and an animal type organization. These fossils date from the early Cambrian, she said, yet they are similar in important ways to creatures found during the earlier Ediacaran period.

In other words, this group of animals not only persisted from the onset of the Ediacaran period, but also after the often-invoked mass extinction that came along with the Cambrian Explosion.

Jennifer Hoyal Cuthill, paleobiologist with a focus on Ediacaran period when life began to grow substantially in size. (Julieta Sarmiento Photography).

Hoyal Cuthill says that while the fossil record from the Ediacaran is sparse, flora and fauna are known to have included some of the oldest definite multicellular organisms. The organisms, she said, resembled fractal fronds but bear little resemblance to modern lifeforms.

The world’s first ever burrowing animals also evolved in the Ediacaran, though we don’t know what they looked like. The only fossils that have been found are of the burrows themselves, not the creatures that made them.

In an earlier paper, she described how and why many of the Ediacaran lifeforms got as large as they did.

“All organisms need nutrients simply to survive and grow, but nutrients can also dictate body size and shape.

“During the Proterozoic, there seem to have been major changes in the Earth’s oceans which may have triggered this… growth to the macro-scale. These include increases in oxygen and, potentially, other nutrients such as organic carbon.”

In other words, the surrounding atmosphere, oceans, perhaps reversing magnetic fields, tectonic and volcanic activity and the resulting menu of chemical compounds available and climatic conditions are essential drivers of biological evolution.  Just as they are now considered some of the important indicators of a potentially habitable exoplanet.

And on a currently far more fanciful note, wouldn’t it be wonderful if scientists could some day not only find life beyond Earth, but to learn to study how that life, too, might have evolved.

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Diamonds and Science: The Deep Earth, Deep Time, and Extraterrestrial Crystal Rain

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Deep Earth diamond with garnet inside.  These inclusions, which occur during the diamond formation process, provide not only a way to date the diamonds, but also a window into conditions in deep Earth when they wee formed.  (M. Gress, VU Amsterdam)

We all know that cut diamonds sparkle and shine, one of the great aesthetic creations from nature.

Less well known is that diamonds and the bits of minerals, gases and water encased in them offer a unique opportunity to probe the deepest regions of our planet.

Thought to be some of the oldest available materials found on Earth — some dated at up to 3.5 billion years old — they crystallize at great depth and under great pressure.

But from the point of view of those who study them, it’s the inclusions that loom large because allow them to know the age and depth of the diamond’s formation. And some think they can ultimately provide important clues to major scientific questions about the origin of water on Earth and even the origin of life.

The strange and remarkable subterranean world where the diamonds are formed has, of course, never been visited, but has been intensively studied using a variety of indirect measurements.  And this field has in recent weeks gotten some important discoveries based on those diamond inclusions.

First is the identification by Fabrizio Nestola of the Department of Geosciences at the University of Padua and colleagues of a mineral that has been theorized to be the fourth most  common on Earth, yet had never been found in nature or successfully synthesized in a laboratory.  As reported in the journal Nature, the mineral is a variant of calcium silicate (CaSiO3), created at a high pressure that gives it a uniquely deep-earth crystal structure called “perovskite,” which is the name of a mineral, too.

Mineral science does not allow a specimen to be named until it has actually been found in name, and now this very common form of mineral finally will get a name. But more important, it moves forward our understanding of what happens far below the Earth’s surface.

 

 

Where diamonds are formed and found on Earth. The super-deep are produced very far into the mantle and are pushed up by volcanoes and convection  The lithospheric diamonds are from the rigid upper mantle and crust and the alluvial diamonds are those which came to the surface and then were transported elsewhere by natural forces. (Fabrio Nestola, Joseph R Smyth)

 

The additional discovery was of a tiny bit of water ice known as ICE-VII inside several other deep diamonds.  While samples of H2O ice have been identified in diamonds before, none were ICE-VII which is formed only under tremendous deep-Earth pressure.

In addition to being a first, the ICE-VII discovery adds to the growing confidence of scientists that much H2O remains deep underground, with some inferring as much deep subsurface water as found in the surface oceans.  That paper was authored by University of Nevada, Las Vegas geoscientist Oliver Tschauner and colleagues, and appeared in the journal Science.

Diamonds are a solid form of carbon with a distinctive cubic crystal structure.  They are generally formed at depths of 100 to 150 miles in the Earth’s mantle, although a few have come from as deep as 500 to 600 miles down.  (And some come from space, as described in this article below and in a just published Nature Communications article about diamonds in the Almahata Sitta meteorite that crashed in Sudan in 2006.)

Those super-deep Earth diamonds form in a cauldron up to 1,000 degrees F and at 240,000 times the atmospheric pressure at sea level.  They are made from carbon-containing fluids that dissolve minerals and replace them with what over time become diamonds.

Much more recently (tens to hundreds of million years ago), the would have been pushed to the surface in volcanic eruptions and deposited in igneous rocks known as kimberlites (blue-tinged in color and coarse grained) and lamproites (rich in potassium and also from deep in the mantle.)

The mantle – which makes up more than 80 percent of the Earth’s volume – is made of silicate minerals containing iron, aluminum, and calcium among others.  Blue diamonds are that color because of the presence of the trace mineral boron in the mantle.

And now we can add water the list as well.

 

Professor of Mineralogy Fabrizio Nestola presented on his recent work in advances in X-ray crystallography on diamonds and their inclusions in a talk title “Diamond, A Journey to the Center of the Earth.” One of his collaborators on the recent high-pressure calcium silicate paper is mantle geochemist Graham Pearson of the University of Alberta, where Nestola was recently a visiting professor. (RadioBue.it)

Nestola, who has been conducting his deep-Earth studies with a major grant from the European Union, is eager to take his already substantial work much further.

First he is looking for answers to the basic question of the origin of water on Earth (from incoming asteroids and comets or an integral component at formation) and ultimately to the origin of life.  Diamonds, he says, offer a pathway to study both subjects.

For water, his goal is to find a range of diamond-encircled samples that can be measured for their deuterium to hydrogen ratio — a key diagnostic to determining where in the solar system an object and its H2O originated,  Deuterium, or heavy hydrogen, is an isotope of hydrogen with an extra neutron.

An example of a super-deep diamond from the Cullinan Mine, where scientists recently discovered a diamond that provides first evidence in nature of Earth’s fourth most abundant mineral–calcium silicate perovskite. (Petra Diamonds)

As the number of diamond samples with evidence of water grows, Nestola says it will be possible to determine how the D/H ratio changes over time and as a result gain a better understanding of where the Earth’s water came from.

When it comes to clues regarding the origin of life, Nestola will be looking for carbon isotopes in the diamonds.

“Actually, it cannot be excluded that carbon from a primordial organic matter can even travel to the lower mantle,” he told me. “The oldest diamonds were dated 3.5-3.6 billion years, so it would be fantastic to detect a carbon isotope signature of surface carbon in a 3.5 billion years diamond.  This could provide very strong input for the origin of life.”

Regarding the high-pressure form of calcium silicate that he and his colleagues recently identified, Nestola said that many scientists have tried to reproduce it in their labs but have found there’s no way to keep the mineral stable at surface pressures.  So the discovery had to be made from inside the nearly impermeable container of a diamond.

The diamond that contained the common yet never before found mineral was just 0.031 millimeters across, is also a super-rare specimen.

Adding to the interest in this discovery is that other trace minerals and elements found in the inclusion strongly suggest that the material was once on the Earth’s crust.  The logic is that it would have been subducted as a function of plate tectonics billions of years ago, then encased in a forming diamond deep in the mantle, and ultimately sent back up near the surface again.

Most diamonds are born much closer to Earth’s surface, between 93 and 124 miles deep. But this particular diamond would have formed at a depth of around 500 miles, the researchers said.

“The diamond keeps the mineral at the pressure where it was formed, and so it tells us a lot about the ancient deep-Earth environment,” Nestola said.  “This is how we’ll learn about deep Earth and ancient Earth.  And we hope about those central origin questions too.”

 

A South African diamond crystal on kimberlite, an igneous rock formed deep in the mantle and famous for the frequency with which it contains diamonds. (Shutterstock)

For his ICE-VII study, Tschauner used diamonds found in China, the Republic of South Africa, and Botswana that had been pushed up from inside Earth.  He believes the range of locations strongly suggests that the presence of the ICE-VII is a global phenomenon.

Scientists theorize the diamonds used in the study were born in the mantle under temperatures reaching more than 1,000-degrees Fahrenheit.

“One essential question that we are working on is how much water is actually stored in the mantle.  Is it oceans, or just a bit?” Tschauner said. “This work shows there can be free excess fluids in the mantle, which is important.”

The mantle is a vast reservoir of mostly solid and very hot rock under immense pressure beneath the crust. It has an upper layer, a transition zone, and a lower layer. The upper layer has a little bit of water, but scientist estimate 10 times more water may be in the transition zone, where the enormous pressure is changing crystal structures and minerals seem to be more soluble. Minerals in the lower layer don’t seem to hold water as well.

There’s already evidence of water in the mantle in different forms, such as water that has been broken up and incorporated into other minerals. But these diamonds contain water frozen into a special kind of ice crystal. There are lots of different ways water can crystallize into ice, but ice-VII is formed under higher pressures.

While the diamond was forming, it must have encapsulated some liquid water from around the transition zone. The high temperatures prevented this water from crystalizing under the high pressures. As geologic activity moved the diamonds to the surface, they maintained the high pressures in their rigid crystal structures—but the temperature dropped. This would have caused the water to freeze into ice-VII.

The discovery of Ice-VII in the diamonds is the first known natural occurrence of the aqueous fluid from the deep mantle. Ice-VII had been found as a solid in prior lab testing of materials under intense pressure. As described before,  it begins as a liquid in the mantle.

“These discoveries are important in understanding that water-rich regions in the Earth’s interior can play a role in the global water budget and the movement of heat-generating radioactive elements,” Tschauner said.

This discovery can help scientists create new, more accurate models of what’s going on inside the Earth, specifically how and where heat is generated under the Earth’s crust.

 “It’s another piece of the puzzle in understanding how our planet works,” Tschauner said.

A polished and enlarged section of the Esquel pallasite meteoritemeteorite that delivered tiny nano-diamonds to Earth. This is a common occurrence, as there is believed to be substantial amounts of high-pressure carbon in the galaxies, and thus some diamonds. (Trustees of the NHM, London)

The diamonds studied by researchers such as Nestola and Tschauner not the sort that would ever go to the market.  “They are very bad diamonds, bad for jewelers,” Nestola said, “but precious for geologists.”

Diamonds are by no means exclusive to Earth, and are becoming a significant area of study for planetary exoplanet scientists, too.

Not only are they contained in minute form in meteorites, but atmospheric data for the gas giant planets indicates that carbon is abundant in its famous hard crystal form elsewhere in the solar system and no doubt beyond.

Lightning storms turn methane into sooty carbon which, as it falls, hardens under great pressure into graphite and then diamond.

These diamond “hail stones” eventually melt into a liquid sea in the planets’ hot cores, researchers told a an American Astronomical Society conference in 2013.

The biggest diamonds would likely be about a centimeter in diameter – “big enough to put on a ring, although of course they would be uncut,” says Dr Kevin Baines, of the University of Wisconsin-Madison and NASA’s Jet Propulsion Laboratory.

“The bottom line is that 1,000 tons of diamonds a year are being created on Saturn. People ask me – how can you really tell? Because there’s no way you can go and observe it.

“It all boils down to the chemistry. And we think we’re pretty certain.”

These potential raining diamonds, and all sorts of other extraterrestrial diamonds including possible diamond worlds, doubtless have their own scientifically compelling and important stories to tell.

 

 

 

 

 

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Northern Lights (Part Two)

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Northern Lights at a latitude of about 70 degrees north, well within the Arctic Circle. These photos were taken about 30 miles from the town of Alta. (Lisa Braithwaite)

In my recent column about The Northern Lights, the Magnetic Field and Life,  I explored the science and the beauty of our planet’s aurora borealis, one of the great natural phenomenon we are most fortunate to see in the far North (and much less frequently in the not-quite-so-far North.)

I learned the hard way that an IPhone camera was really not up to the job;  indeed, the battery froze soon after leaving my pocket in the 10 degrees F cold.  So the column had few images from where I actually was — about a half hour outside of the Arctic Circle town of Alta.

But here now are some images taken by a generous visitor to the same faraway lodge, who was present the same time as myself.

Her name is Lisa Braithwaite and she is an avid amateur photographer and marketing manager for two popular sites in the English Lake District.  This was her first hunting trip for the Northern Lights, and she got lucky.  Even in the far northern Norway winter the lights come and go unpredictably — though you can increase your chances if you show up during a time when the sun is actively sending out solar flares.

She came with a Panasonic Lumix DMC-G5 camera and did a lot of research beforehand to increase her chances of capturing the drama should the lights appear.  Her ISOs ranged from 1,600 to 64,000, and her shutter speed from 5 to 15 seconds.  The aperture setting was 3.5.

In addition to showing some of her work, further on I describe a new NASA-led and international program, based in Norway, to study the still incompletely understood dynamics of what happens when very high energy particles from solar flares meet Earth’s atmosphere.

Partnering with the Japanese Aerospace Exploration Agency (JAXA,) the University of Oslo an other American universities, the two year project will send eleven rockets filled with instruments into the ionosphere to study phenomenon such as the auroral winds and the turbulence that can cause so much trouble to communications networks.

But first, here are some morre of Braithwaite’s images, most taken over a one hour period on a single night.

Arcs are a common feature of the lights, sometimes reaching across the sky. They form and then break up into smaller patches. (Lisa Braithwaite.)

 

The line of the Arctic Circle line can be seen a little more than half-way up the map. The Circle is the most northerly of the five major circles of latitude as shown on maps of Earth. At about 65 degrees North, it marks the northernmost point at which the noon sun is just visible on the December solstice and the southernmost point at which the midnight sun is just visible on the June solstice. (Stepmap.com)

Vast curtains of light are a common feature, often on the horizon but on good nights high up into the sky.  The lights can sometimes shimmer and dance, and can feature what appear to be vast spotlights.

 

The lights are often green — the result of interactions between high energy solar flares and oxygen.  If the lights are blue, then nitrogen is in play.  (Lisa Braithwaite)

 

At certain points in the night, large parts of the sky were lit up — leaving us turning and craning our heads to see what might be happening in different regions. (Lisa Braithwaite)

 

The light shows often start and end with green horizons.  (Lisa Braithwaite)

While the grandeur of the lights attracts an ever increasing number of adventurous lovers of natural beauty, NASA is also busy in Norway studying the forces that cause the Aurora Borealis — both for the pure science and to better understand the “space weather” that can effect astronauts in low Earth orbit as well as GPS and other communication signals.

The agency has partnered with Norwegian and Japanese colleagues, and other American scientists, in an effort to generally better understand the Earth’s polar cusp — where the planet’s magnetic field lines bend down into the atmosphere and allow particles from space to intermingle with those of Earthly origin.

Solar flares consist of electrically charged particles. They are attracted by the concentrated magnetic fields in the ionosphere around the Earth’s polar regions. This is the reason why the glorious light shows can be observed pretty much exclusively in the far north or the far south.

The two-year project will send eight rockets into space from Norway as part of collaboration of scientists known as The Grand Challenge Initiative – Cusp.

The first mission, the Auroral Zone Upwelling Rocket Experiment or AZURE, is scheduled to launch this month.  The rocket will take off from Norway’s Andøya Space Center, on an island off the far northwest coast of Norway, about 100 miles southwest of where I was near the town of Alta.

As a NASA release of March 1 described it, AZURE’s instruments will measure the atmospheric density and temperature of the polar atmosphere, and will deploy visible tracers — trimethyl aluminum (TMA) and a barium/strontium mixture, which ionize when exposed to sunlight.

Personnel from NASA’s Wallops Flight Facility in Virginia conduct payload tests for the AZURE mission at the Andøya Space Center in Norway. (NASA’s Wallops Flight Facility)

“These mixtures create colorful clouds that allow researchers to track the flow of neutral and charged particles, respectively,” the release reads. “The tracers will be released at altitudes 71 to 155 miles high and pose no hazard to residents in the region.

“By tracking the movement of these colorful clouds via ground-based photography and triangulating their moment-by-moment position in three dimensions, AZURE will provide valuable data on the vertical and horizontal flow of particles in two key regions of the ionosphere over a range of different altitudes.

“Such measurements are critical if we are to truly understand the effects of the mysterious yet beautiful aurora. The results will be key to a better understanding of the effects of auroral forcing on the atmosphere, including how and where the auroral energy is deposited.”

AZURE will focus specifically on measuring the vertical winds in these polar regions, which create a tumultuous particle soup that re-distributes the energy, momentum and chemical constituents of the atmosphere.

AZURE will study the ionosphere, the electrically charged layer of the atmosphere that acts as Earth’s interface to space, focusing specifically on the E and F regions. The E region — so-named by early radio pioneers who discovered that the region was electrically charge, and so could reflect radio waves — lies between 56 to 93 miles above Earth’s surface. The F region resides just above it, between 93 to 310 miles altitude.

The E and F regions contain free electrons that have been ejected from their atoms by the energizing input of the Sun’s rays, a process called photoionization. After nightfall, without the energizing input of the Sun to keep them separated, electrons recombine with the positively charged ions they left behind, lowering the regions’ overall electron density. The daily cycle of ionization and recombination makes the E and F regions especially turbulent and complex.

Aurora as seen from Talkeetna, Alaska, on Nov. 3, 2015. (Copyright Dora Miller)

It has been known for a century that solar flares create the fantastic displays of the Northern and Southern lights.  More recently, it has also become well known that solar flares cause problems for both satellites and navigation systems.

Despite decades of study, scientists still lack the basic knowledge required for predicting when such problems will occur. Once they understand this, it should be possible to make good space weather forecasts just like we do with our weather forecasts on Earth.

When solar storms rain down on the Earth, they cause turbulence in the ionosphere.  This turbulence is one of the major unsolved problems of classical physics and physicists are hoping that the rockets will lead to a far better understanding of the phenomenon.

“Without such an understanding of turbulence it is impossible to make the calculations needed for being able to predict severe space weather events,” said Joran Moen of the University of Oslo, and one of the project leaders. He spoke with the University of Oslo research magazine “Apollon.”

The rockets of The Grand Challenge Initiative – Cusp  mission will launch over the next two years from the Andøya and Svalbard rocket ranges in Norway. Nine of the rockets are from NASA, one from JAXA and one building built the at the University of Norway.

One particular “sounding” will be made with the launch of four rockets at once, an unusual and complex procedure.

Those involved say this will be among the most ambitious attempts ever using rockets for research purposes.

“We will try to launch four of the rockets at the same time. This has never been done before. It is a historic venture,” said Moen.

Yoshifumi Saito of JAXA further explained that “the four parallel rockets are important for us.  By using them we can obtain much better scientific results than would have been the case if we had just launched one rocket at a time.”

Important and compelling science.  And think of how many times the scientists will be able to experience the glories of the Northern Lights show.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Northern Lights, the Magnetic Field and Life

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Northern Lights over a frozen lake in Northern Norway, inside the Arctic Circle near Alta. The displays can go on for hours, or can disappear for days or weeks. It all depends on solar flares. (Ongajok.no)

May I please invite you to join me in the presence of one of the great natural phenomena and spectacles of our world.

Not only is it enthralling to witness and scientifically crucial, but it’s quite emotionally moving as well.

Why? Because what’s before me is a physical manifestation of one of the primary, but generally invisible, features of Earth that make life possible. It’s mostly seen in the far northern and far southern climes, but the force is everywhere and it protects our atmosphere and us from the parched fate of a planet like Mars.

I’m speaking, of course, of the northern lights, the Aurora Borealis, and the planet’s magnetic fields that help turn on the lights.

My vantage point is the far northern tip of Norway, inside the Arctic Circle. It’s stingingly cold in the silent woods, frozen still for the long, dark winter, and it’s always an unpredictable gift when the lights show up.

But they‘re out tonight, dancing in bright green and sometimes gold-tinged arches and spotlights and twirling pinwheels across the northerly sky. Sometimes the horizon glows green, sometimes the whole sky fills with vivid green streaks.

It can all seem quite other-worldly. But the lights, of course, are entirely the result of natural forces.

 

Northern Lights over north western Norway. Most of the lights are green from collisions with oxygen, but some are purple from nitrogen. © Copyright George Karbus Photography

It has been known for some time that the lights are caused by reactions between the high-energy particles of solar flares colliding in the upper regions of our atmosphere and then descending along the lines of the planet’s magnetic fields. Green lights tell of oxygen being struck at a certain altitude, red or blue of nitrogen.

But the patterns — sometimes broad, sometimes spectral, sometimes curled and sometimes columnar — are the result of the magnetic field that surrounds the planet. The energy travels along the many lines of that field, and lights them up to make our magnetic blanket visible.

Such a protective magnetic field is viewed as essential for life on a planet, be it in our solar system or beyond.

But a magnetic field does not a habitable planet make. Mercury has a weak magnetic field and is certainly not habitable. Mars also once had a strong magnetic field and still has some remnants on its surface. But it fell apart early in the planet’s life, and that may well have put a halt to the emergence or evolution of living things on the otherwise habitable planet.

I will return to some of the features of the northern lights and the magnetism is makes visible, but this is also an opportunity to explore the role of magnetism in biology itself.

This was a quasi-science for some time, but more recently it has been established that migrating birds and fish use magnetic sensors (in their beaks or noses, perhaps) to navigate northerly and southward paths.

Graphic from Science Magazine.

 

But did you know that bacteria, insects and mammals of all sorts appear to have magnetic compasses as well?   They can read the magnetism in the air, or can read it in the rocks (as in the case of some sea turtles.) A promising line of study, pioneered by scientists including geobiologist Joseph Kirschvink of the California Institute of Technology (Caltech) and the Earth-Life Science Institute (ELSI) in Tokyo, is even studying potentially remnant magnetic senses in humans.

“There no doubt now that magnetic receptors are present in many, many species, and those that don’t have it probably lost it because it wasn’t useful to them,” he told me. “But there’s good reason to say that the magnetic sense was most likely one of the earliest on Earth.”

But how does it work for animals? How do they receive the magnetic signals? This is a question of substantial study and debate.

One theory states that creatures use the iron mineral magnetite — that they can produce and consume – to pick up the magnetic signals. These miniature compass needles sit within receptor cells, either near a creature’s nose or in the inner ear.

Joseph Kirschvink, a geobiologist with Caltech and ELSI (the Earth-Life Science Institute in Tokyo) has been studying for decades the ways in which creatures from bacteria to humans use magnetic forces in their lives. (Caltech)

Another posits that magnetic fields trigger quantum chemical reactions in proteins called cryptochromes, which have been found in the retina. But no one has determined how they might send signals and information to the brain.

Kirschvink was part of a team that demonstrated bacteria’s use of Earth’s magnetic field back to the Archean era, 3 to 3.5 billion years ago.   “My guess is that magnetism has had a major influence on the biosphere since then, via the biological ability to make magnetic materials.”

He said that when the sun is particularly angry and active, the geomagnetic storms that occur around the planet seem to interfere with these magnetic responses and that animals don’t navigate as well.

Kirschvink sees magnetism as a possibly important force in the origin of life. Magnetite that is lined up like beads on a chain has been detected in bacteria, and he says it may have provided an evolutionary pathway for structure that allowed for the rise of eukaryotes — organisms with complex cells, or a single cell with a complex structures.

Kirschvink and his team are in the midst of a significant study of the effects of geomagnetism on humans, and the pathways through which that magnetism might be used.

That’s rather a long way from some of the early biomagnetism discoveries, which involved the chiton.  A mollusk relative of the snail and the limpet, the chiton holds on to rocks in the shallow water and uses its magnetite-covered teeth to scrape algae from rocks.  The teeth are on a tongue-like feature called the radula and those teeth are capped with so much magnetite that a magnet can pick up the foot-long gumboot chiton, the largest of the species.

The underside of a gumboot chiton, with its teeth covered with magnetite, can be lifted up with a magnet.

Back at most northern and southerly regions of the planet, where the magnetic field lines are most concentrated, the lights put on their displays for ever larger audiences of people who want to experience their presence.

We had part of one night of almost full sky action, with long arches, curves large and small, waves, spotlights , shimmers and curtains.  It had the feel of a spectacular fireworks display, but magnified in its glory and power and, of course, entirely natural.  (I hope to post images taken by others that night which, alas, were not captured by my camera because the battery froze in the 10 degree cold.)

Our grand night was one of the special ones when the colors (almost all greens, but some reds too) were so bright that their shapes and movements were easy to see with the naked eye.

Good cameras (especially those with batteries that don’t freeze) see and capture a much broader range of the northern light presence.  The horizon, for instance, can appear just slightly green to the naked eye, but will look quite brightly green in an image.

Thanks to the National Oceanic and Atmospheric Administration, the National Weather Service and NASA, forecasting when and where the lights are likely to be be active in the northern and southern (the Aurora Australis) polar regions.

This forecasting of space weather revolves around the the eruption of solar flares.  The high-energy particles they send out collide with electrons in our upper atmosphere accelerate and follow the Earth’s magnetic fields down to the polar regions.

Models based on measuring solar flares, or coronal mass ejections, coming from sunspots that rotate and face Earth every 27 or 28 days.  Summer months in the northern hemisphere often make the sky too light for the lights to be seen, so the long winter nights are generally the best time to see them.  But they do appear in summer, too.  (NOAA)

In these collisions, the energy of the electrons is transferred to the oxygen and nitrogen and other elements in the atmosphere, in the process exciting the atoms and molecules to higher energy states. When they relax back down to lower energy states, they release their energy in the form of light. This is similar to how a neon light works.

The aurora typically forms 60 to 400 miles above Earth’s surface.

All this is possible because of our magnetic field, which scientists theorize was created and is sustained by interactions between super-hot liquid iron in the outer core of the Earth’s center and the rotation of the planet.  The flowing or convection of liquid metal generates electric currents and the rotation of Earth causes these electric currents to form a magnetic field which extends around the planet.

If the magnetic field wasn’t present those highly charged particles coming from the sun, the ones that set into motion the processes that produce the Northern and Southern Lights, would instead gradually strip the atmosphere of the molecules needed for life.

This intimate relationship between the magnetic field and life led to me ask Kirschvink, who has been studying that connection for decades, if he had seen the northern or southern lights.

No, he said, he’d never had the chance.  But if ever in the presence of the lights, he said he know exactly what he would do:  take out his equipment and start taking measurements and pushing his science forward.

Northern Lights in northern Norway, near Alta.  Sometimes they dance for minutes, sometimes for hours, but often they never come at all.  It all depends on the rotation of the sun; if and when it may be shooting out high-energy solar flares. (Wiki Commons)
Facebooktwittergoogle_plusredditpinterestlinkedinmail