The Northern Lights (Part Two)

Northern Lights at a latitude of about 70 degrees north, well within the Arctic Circle. These photos were taken about 30 miles from the town of Alta. (Lisa Braithwaite)

In my recent column about The Northern Lights, the Magnetic Field and Life,  I explored the science and the beauty of our planet’s aurora borealis, one of the great natural phenomenon we are most fortunate to see in the far North (and much less frequently in the not-quite-so-far North.)

I learned the hard way that an IPhone camera was really not up to the job;  indeed, the battery froze soon after leaving my pocket in the 10 degrees F cold.  So the column had few images from where I actually was — about a half hour outside of the Arctic Circle town of Alta.

But here now are some images taken by a generous visitor to the same faraway lodge, who was present the same time as myself.

Her name is Lisa Braithwaite and she is an avid amateur photographer and marketing manager for two popular sites in the English Lake District.  This was her first hunting trip for the Northern Lights, and she got lucky.  Even in the far northern Norway winter the lights come and go unpredictably — though you can increase your chances if you show up during a time when the sun is actively sending out solar flares.

She came with a Panasonic Lumix DMC-G5 camera and did a lot of research beforehand to increase her chances of capturing the drama should the lights appear.  Her ISOs ranged from 1,600 to 64,000, and her shutter speed from 5 to 15 seconds.  The aperture setting was 3.5.

In addition to showing some of her work, further on I describe a new NASA-led and international program, based in Norway, to study the still incompletely understood dynamics of what happens when very high energy particles from solar flares meet Earth’s atmosphere.

Partnering with the Japanese Aerospace Exploration Agency (JAXA,) the University of Oslo an other American universities, the two year project will send eleven rockets filled with instruments into the ionosphere to study phenomenon such as the auroral winds and the turbulence that can cause so much trouble to communications networks.

But first, here are some morre of Braithwaite’s images, most taken over a one hour period on a single night.

Arcs are a common feature of the lights, sometimes reaching across the sky. They form and then break up into smaller patches. (Lisa Braithwaite.)


The line of the Arctic Circle line can be seen a little more than half-way up the map. The Circle is the most northerly of the five major circles of latitude as shown on maps of Earth. At about 65 degrees North, it marks the northernmost point at which the noon sun is just visible on the December solstice and the southernmost point at which the midnight sun is just visible on the June solstice. (

Vast curtains of light are a common feature, often on the horizon but on good nights high up into the sky.  The lights can sometimes shimmer and dance, and can feature what appear to be vast spotlights.


The lights are often green — the result of interactions between high energy solar flares and oxygen.  If the lights are blue, then nitrogen is in play.  (Lisa Braithwaite)


At certain points in the night, large parts of the sky were lit up — leaving us turning and craning our heads to see what might be happening in different regions. (Lisa Braithwaite)


The light shows often start and end with green horizons.  (Lisa Braithwaite)

While the grandeur of the lights attracts an ever increasing number of adventurous lovers of natural beauty, NASA is also busy in Norway studying the forces that cause the Aurora Borealis — both for the pure science and to better understand the “space weather” that can effect astronauts in low Earth orbit as well as GPS and other communication signals.

The agency has partnered with Norwegian and Japanese colleagues, and other American scientists, in an effort to generally better understand the Earth’s polar cusp — where the planet’s magnetic field lines bend down into the atmosphere and allow particles from space to intermingle with those of Earthly origin.

Solar flares consist of electrically charged particles. They are attracted by the concentrated magnetic fields in the ionosphere around the Earth’s polar regions. This is the reason why the glorious light shows can be observed pretty much exclusively in the far north or the far south.

The two-year project will send eight rockets into space from Norway as part of collaboration of scientists known as The Grand Challenge Initiative – Cusp.

The first mission, the Auroral Zone Upwelling Rocket Experiment or AZURE, is scheduled to launch this month.  The rocket will take off from Norway’s Andøya Space Center, on an island off the far northwest coast of Norway, about 100 miles southwest of where I was near the town of Alta.

As a NASA release of March 1 described it, AZURE’s instruments will measure the atmospheric density and temperature of the polar atmosphere, and will deploy visible tracers — trimethyl aluminum (TMA) and a barium/strontium mixture, which ionize when exposed to sunlight.

Personnel from NASA’s Wallops Flight Facility in Virginia conduct payload tests for the AZURE mission at the Andøya Space Center in Norway. (NASA’s Wallops Flight Facility)

“These mixtures create colorful clouds that allow researchers to track the flow of neutral and charged particles, respectively,” the release reads. “The tracers will be released at altitudes 71 to 155 miles high and pose no hazard to residents in the region.

“By tracking the movement of these colorful clouds via ground-based photography and triangulating their moment-by-moment position in three dimensions, AZURE will provide valuable data on the vertical and horizontal flow of particles in two key regions of the ionosphere over a range of different altitudes.

“Such measurements are critical if we are to truly understand the effects of the mysterious yet beautiful aurora. The results will be key to a better understanding of the effects of auroral forcing on the atmosphere, including how and where the auroral energy is deposited.”

AZURE will focus specifically on measuring the vertical winds in these polar regions, which create a tumultuous particle soup that re-distributes the energy, momentum and chemical constituents of the atmosphere.

AZURE will study the ionosphere, the electrically charged layer of the atmosphere that acts as Earth’s interface to space, focusing specifically on the E and F regions. The E region — so-named by early radio pioneers who discovered that the region was electrically charge, and so could reflect radio waves — lies between 56 to 93 miles above Earth’s surface. The F region resides just above it, between 93 to 310 miles altitude.

The E and F regions contain free electrons that have been ejected from their atoms by the energizing input of the Sun’s rays, a process called photoionization. After nightfall, without the energizing input of the Sun to keep them separated, electrons recombine with the positively charged ions they left behind, lowering the regions’ overall electron density. The daily cycle of ionization and recombination makes the E and F regions especially turbulent and complex.

Aurora as seen from Talkeetna, Alaska, on Nov. 3, 2015. (Copyright Dora Miller)

It has been known for a century that solar flares create the fantastic displays of the Northern and Southern lights.  More recently, it has also become well known that solar flares cause problems for both satellites and navigation systems.

Despite decades of study, scientists still lack the basic knowledge required for predicting when such problems will occur. Once they understand this, it should be possible to make good space weather forecasts just like we do with our weather forecasts on Earth.

When solar storms rain down on the Earth, they cause turbulence in the ionosphere.  This turbulence is one of the major unsolved problems of classical physics and physicists are hoping that the rockets will lead to a far better understanding of the phenomenon.

“Without such an understanding of turbulence it is impossible to make the calculations needed for being able to predict severe space weather events,” said Joran Moen of the University of Oslo, and one of the project leaders. He spoke with the University of Oslo research magazine “Apollon.”

The rockets of The Grand Challenge Initiative – Cusp  mission will launch over the next two years from the Andøya and Svalbard rocket ranges in Norway. Nine of the rockets are from NASA, one from JAXA and one building built the at the University of Norway.

One particular “sounding” will be made with the launch of four rockets at once, an unusual and complex procedure.

Those involved say this will be among the most ambitious attempts ever using rockets for research purposes.

“We will try to launch four of the rockets at the same time. This has never been done before. It is a historic venture,” said Moen.

Yoshifumi Saito of JAXA further explained that “the four parallel rockets are important for us.  By using them we can obtain much better scientific results than would have been the case if we had just launched one rocket at a time.”

Important and compelling science.  And think of how many times the scientists will be able to experience the glories of the Northern Lights show.



The Northern Lights, the Magnetic Field and Life

Northern Lights over a frozen lake in Northern Norway, inside the Arctic Circle near Alta. The displays can go on for hours, or can disappear for days or weeks. It all depends on solar flares. (

May I please invite you to join me in the presence of one of the great natural phenomena and spectacles of our world.

Not only is it enthralling to witness and scientifically crucial, but it’s quite emotionally moving as well.

Why? Because what’s before me is a physical manifestation of one of the primary, but generally invisible, features of Earth that make life possible. It’s mostly seen in the far northern and far southern climes, but the force is everywhere and it protects our atmosphere and us from the parched fate of a planet like Mars.

I’m speaking, of course, of the northern lights, the Aurora Borealis, and the planet’s magnetic fields that help turn on the lights.

My vantage point is the far northern tip of Norway, inside the Arctic Circle. It’s stingingly cold in the silent woods, frozen still for the long, dark winter, and it’s always an unpredictable gift when the lights show up.

But they‘re out tonight, dancing in bright green and sometimes gold-tinged arches and spotlights and twirling pinwheels across the northerly sky. Sometimes the horizon glows green, sometimes the whole sky fills with vivid green streaks.

It can all seem quite other-worldly. But the lights, of course, are entirely the result of natural forces.


Northern Lights over north western Norway. Most of the lights are green from collisions with oxygen, but some are purple from nitrogen. © Copyright George Karbus Photography

It has been known for some time that the lights are caused by reactions between the high-energy particles of solar flares colliding in the upper regions of our atmosphere and then descending along the lines of the planet’s magnetic fields. Green lights tell of oxygen being struck at a certain altitude, red or blue of nitrogen.

But the patterns — sometimes broad, sometimes spectral, sometimes curled and sometimes columnar — are the result of the magnetic field that surrounds the planet. The energy travels along the many lines of that field, and lights them up to make our magnetic blanket visible.

Such a protective magnetic field is viewed as essential for life on a planet, be it in our solar system or beyond.

But a magnetic field does not a habitable planet make. Mercury has a weak magnetic field and is certainly not habitable. Mars also once had a strong magnetic field and still has some remnants on its surface. But it fell apart early in the planet’s life, and that may well have put a halt to the emergence or evolution of living things on the otherwise habitable planet.

I will return to some of the features of the northern lights and the magnetism is makes visible, but this is also an opportunity to explore the role of magnetism in biology itself.

This was a quasi-science for some time, but more recently it has been established that migrating birds and fish use magnetic sensors (in their beaks or noses, perhaps) to navigate northerly and southward paths.

Graphic from Science Magazine.


But did you know that bacteria, insects and mammals of all sorts appear to have magnetic compasses as well?   They can read the magnetism in the air, or can read it in the rocks (as in the case of some sea turtles.) A promising line of study, pioneered by scientists including geobiologist Joseph Kirschvink of the California Institute of Technology (Caltech) and the Earth-Life Science Institute (ELSI) in Tokyo, is even studying potentially remnant magnetic senses in humans.

“There no doubt now that magnetic receptors are present in many, many species, and those that don’t have it probably lost it because it wasn’t useful to them,” he told me. “But there’s good reason to say that the magnetic sense was most likely one of the earliest on Earth.”

But how does it work for animals? How do they receive the magnetic signals? This is a question of substantial study and debate.

One theory states that creatures use the iron mineral magnetite — that they can produce and consume – to pick up the magnetic signals. These miniature compass needles sit within receptor cells, either near a creature’s nose or in the inner ear.

Joseph Kirschvink, a geobiologist with Caltech and ELSI (the Earth-Life Science Institute in Tokyo) has been studying for decades the ways in which creatures from bacteria to humans use magnetic forces in their lives. (Caltech)

Another posits that magnetic fields trigger quantum chemical reactions in proteins called cryptochromes, which have been found in the retina. But no one has determined how they might send signals and information to the brain.

Kirschvink was part of a team that demonstrated bacteria’s use of Earth’s magnetic field back to the Archean era, 3 to 3.5 billion years ago.   “My guess is that magnetism has had a major influence on the biosphere since then, via the biological ability to make magnetic materials.”

He said that when the sun is particularly angry and active, the geomagnetic storms that occur around the planet seem to interfere with these magnetic responses and that animals don’t navigate as well.

Kirschvink sees magnetism as a possibly important force in the origin of life. Magnetite that is lined up like beads on a chain has been detected in bacteria, and he says it may have provided an evolutionary pathway for structure that allowed for the rise of eukaryotes — organisms with complex cells, or a single cell with a complex structures.

Kirschvink and his team are in the midst of a significant study of the effects of geomagnetism on humans, and the pathways through which that magnetism might be used.

That’s rather a long way from some of the early biomagnetism discoveries, which involved the chiton.  A mollusk relative of the snail and the limpet, the chiton holds on to rocks in the shallow water and uses its magnetite-covered teeth to scrape algae from rocks.  The teeth are on a tongue-like feature called the radula and those teeth are capped with so much magnetite that a magnet can pick up the foot-long gumboot chiton, the largest of the species.

The underside of a gumboot chiton, with its teeth covered with magnetite, can be lifted up with a magnet.

Back at most northern and southerly regions of the planet, where the magnetic field lines are most concentrated, the lights put on their displays for ever larger audiences of people who want to experience their presence.

We had part of one night of almost full sky action, with long arches, curves large and small, waves, spotlights , shimmers and curtains.  It had the feel of a spectacular fireworks display, but magnified in its glory and power and, of course, entirely natural.  (I hope to post images taken by others that night which, alas, were not captured by my camera because the battery froze in the 10 degree cold.)

Our grand night was one of the special ones when the colors (almost all greens, but some reds too) were so bright that their shapes and movements were easy to see with the naked eye.

Good cameras (especially those with batteries that don’t freeze) see and capture a much broader range of the northern light presence.  The horizon, for instance, can appear just slightly green to the naked eye, but will look quite brightly green in an image.

Thanks to the National Oceanic and Atmospheric Administration, the National Weather Service and NASA, forecasting when and where the lights are likely to be be active in the northern and southern (the Aurora Australis) polar regions.

This forecasting of space weather revolves around the the eruption of solar flares.  The high-energy particles they send out collide with electrons in our upper atmosphere accelerate and follow the Earth’s magnetic fields down to the polar regions.

Models based on measuring solar flares, or coronal mass ejections, coming from sunspots that rotate and face Earth every 27 or 28 days.  Summer months in the northern hemisphere often make the sky too light for the lights to be seen, so the long winter nights are generally the best time to see them.  But they do appear in summer, too.  (NOAA)

In these collisions, the energy of the electrons is transferred to the oxygen and nitrogen and other elements in the atmosphere, in the process exciting the atoms and molecules to higher energy states. When they relax back down to lower energy states, they release their energy in the form of light. This is similar to how a neon light works.

The aurora typically forms 60 to 400 miles above Earth’s surface.

All this is possible because of our magnetic field, which scientists theorize was created and is sustained by interactions between super-hot liquid iron in the outer core of the Earth’s center and the rotation of the planet.  The flowing or convection of liquid metal generates electric currents and the rotation of Earth causes these electric currents to form a magnetic field which extends around the planet.

If the magnetic field wasn’t present those highly charged particles coming from the sun, the ones that set into motion the processes that produce the Northern and Southern Lights, would instead gradually strip the atmosphere of the molecules needed for life.

This intimate relationship between the magnetic field and life led to me ask Kirschvink, who has been studying that connection for decades, if he had seen the northern or southern lights.

No, he said, he’d never had the chance.  But if ever in the presence of the lights, he said he know exactly what he would do:  take out his equipment and start taking measurements and pushing his science forward.

Northern Lights in northern Norway, near Alta.  Sometimes they dance for minutes, sometimes for hours, but often they never come at all.  It all depends on the rotation of the sun; if and when it may be shooting out high-energy solar flares. (Wiki Commons)

2.5 Billion Years of Earth History in 100 Square Feet

Scalding hot water from an underground thermal spring creates an iron-rich environment similar to what existed on Earth 2.5 billion years ago. (Nerissa Escanlar)

Along the edge of an inlet on a tiny Japanese island can be found– side by side – striking examples of conditions on Earth some 2.4 billion years ago, then 1.4 billion years ago and then the Philippine Sea of today.

First is a small channel with iron red, steaming and largely oxygen-free water – filled from below with bubbling liquid above 160 degrees F. This was Earth as it would have existed, in a general way, as oxygen was becoming more prevalent on our planet some 2.4 billion years ago. Microbes exist, but life is spare at best.

Right next to this ancient scene is region of green-red water filled with cyanobacteria – the single-cell creatures that helped bring masses of oxygen into our atmosphere and oceans.  Locals come to this natural “onsen” for traditional hot baths, but they have to make their way carefully because the rocky floor is slippery with green mats of the bacteria.

And then there is the Philippine Sea, cool but with spurts of warm water shooting up from below into the cove.

All of this within a area of maybe 100 square feet.

It is a unique hydrothermal scene, and one recently studied by two researchers from the Earth-Life Science Institute in Tokyo – evolutionary microbiologist Shawn McGlynn and ancient virus specialist Tomohiro Mochizuki.

They were taking measurements of temperature, salinity and more, as well as samples of the hot gas and of microbial life in the iron-red water. Cyanobacterial mats are collected in the greener water, along with other visible microbe worlds.

Shawn McGlynn, associate professor at the Earth Life Science Institute in Tokyo scoops some iron-rich water from a channel on Shikine-jima Island, 100 miles from Tokyo. (Nerissa Escanlar)

The scientific goals are to answer specific questions – are the bubbles the results of biology or of geochemical processes? What are the isotopic signatures of the gases? What microbes and viruses live in the super-hot sections? And can cyanobacteria and iron co-exist?

All are connected, though, within the broad scientific effort underway to ever more specifically understand conditions on Earth through the eons, and how those conditions can help answer fundamental questions of how life might have begun.

“We really don’t know what microbiology looked like 2.5 billion or 1.5 billion years ago,” said McGlynn, “But this is a place we can go where we can try to find out. It’s a remarkable site for going back in time.”

In particular, there are not many natural environments with high levels of dissolved iron like this site. Yet scientists know from the rock record that there were periods of Earth history when the oceans were similarly filled with iron.

Mochizuki elaborated: “We’re trying to figure out what was possible chemically and biologically under certain conditions long ago.

“If you have something happening now at this unusual place – with the oxygen and iron mixing in the hot water to turn the water red – then there’s a chance that what we find today was there as well billions of years ago. ”

Tomohiro Mochizuki at collecting samples directly from the spot where 160 degree F water pushes up through the rock at Jinata hot spring. (Nerissa Escanlar)

The Jinata hot springs, as the area is known, is on Shikine-jima Island, one of the furthest out in the Izu chain of islands that starts in Tokyo Bay. More than 100 miles from Tokyo itself, Shikine-jima is nonetheless part of Tokyo Prefecture.

The Izu islands are all volcanic, created by the underwater movements of the Philippine and Pacific tectonic plates. That boundary remains in flux, and thus the hot springs and volcanoes. The terrain can be pretty rugged: in English, Jinata translates to something like Earth Hatchet, since the hot spring is at the end of a path through what does look like a rock rising that had been cut through with a hatchet.

Hot springs and underwater thermal vents have loomed large in thinking about origins of life since it became known in recent decades that both generally support abundant life – microbial and larger – and supply nutrients and even energy in the form of electricity from vents and electron transfers from chemical reactions.

And so not surprisingly, vents are visited and sampled not infrequently by ELSI scientists. McGlynn was on another hydrothermal vent field trip in Iceland over the summer with, among others, ELSI Origins Network fellow Donato Gionovelli and ELSI principal investigator and electrochemist Ruyhei Nakamura..

McGlynn’s work is focused on how electrons flow between elements and compounds, a transfer that he sees as a basic architecture for all life. With so many compelling flows occurring in such a small space, Jinata is a superb laboratory.

The volcanic Izu island chain, starting in Tokyo Bay and going out into the Philippine Sea.

For Mochizuki, the site turned out to be exciting but definitely not a goldmine. That’s because his speciality is viruses that live at very high temperatures, and even the bubbling hot spring in the iron trench measured about 73 degrees C (163 degrees F.) The viruses he incubates live at temperatures between closer to 90 C (194 F), not far from the boiling point.

His goal in studying these high-temperature (hyperthermophilic) viruses is to look back to the earliest days of life forming on Earth, using viruses as his navigators. Since life is thought by many scientists to have begun in a super hot RNA world, Mochizuki wants to look at viruses still living in those conditions today to see what they can tell us.

So far, he explained, what they have told us is that the RNA in the earliest lifeforms on Earth – denizens of the Archaean kingdom – did not have viruses. And this is puzzling.

So Mochizuki is always interested in going to sample hot springs and thermal vents to collect high temperature viruses, and to look for surprises.

Though the bubbling waters were so hot that both researchers had difficulty standing in the water with boots on and holding their collection vials with gloves, it was not hot enough for what Mochizuki is after. But that certainly didn’t stop him from taking as many samples as he could, including some for other ELSI researchers doing different work but still needing interesting samples.

Researchers often need to be inventive on field trips, and that was certainly the case at Jinata. When McGlynn first tried to sample the bubbles at the scalding spring, his hands and feet quickly felt on fire and he had to retreat.

To speed the process, he and Mochizuki built a funnel out of a large plastic water bottle, a device that allowed the bubbles to be collected and directed into the sample vial without the gloved hands being so close to the heat.   The booted feet, however, remained a problem and the heat just had to be endured.

Nearby the steaming bubbling of the hot spring were collections of what appeared to be fine etchings on the bottom of the red channel. These faint designs, McGlynn explained, were the product of a microbe that makes it’s way along the bottom and deposits lines of processed iron oxide as it goes. So while the elegant designs are not organic, the creatures that creates them surely is.

“Touch the area and the lines go poof,” McGlynn said. “That’s because they’re just the iron oxide; nothing more. Next to us is the water with much less iron and a lot more oxygen, and so there are blooms of (green) cyanobacteria. Touch them and they don’t go poof, they stick to your hand because they’re alive.”

Filaments created by microbes as they deposit iron oxide at the bottom of small channel. (Marc Kaufman)

McGlynn also collects some of the the poofs to get at the microbes making the unusual etchings. It may be a microbe never identified before.

As a microbiologist, he is of course interested in identifying and classifying microbes. He initially thought the microbes in the iron channel would be anaerobic, but he found that even tiny amount of oxygen making their way into the springs from the atmosphere made most aerobic, or possibly anaerobes capable of surviving with oxygen (which usually is toxic to them.)

He also found that laboratory studies that found cyanobacteria would not flourish in the presence of iron were not accurate in nature, or certainly were not accurate at Jinata onsen.

But it is that flow of electrons that really drives McGlynn – he even dreams of them at night, he told me.

One of the goals of his work, and that of his colleague and sometimes collaborator at ELSI, geobiochemist Yuichiro Ueno, is to answer some of the outstanding questions about that flow of electrons (electricity) from the core of the Earth. The energy transits through the mantle, to the surface and then often is in contact with the biosphere (all living things) before it enters the atmosphere and sometimes disappears into space.

He likened the process to the workings of a gigantic battery, with the iron core as the cathode and the oxygen in the atmosphere as the anode. Understanding the chemical pathways traveled by the electrons today, he is convinced, will tell a great deal about conditions on the early Earth as well.

It’s all important research in what is a chipping away of the many unknowns in the stories of the origins of Earth and the origin of life.

A boundary between where the very hot iron-rich water meets and the less hot water with thriving cyanobacteria colonies at Jinata.

The field work also illustrated the hit-and-miss nature of these kind of outings. While McGlynn has not come up with Jinata surprises or novel understandings, he was so taken with the setting that he wondered if a seemly empty building not too far from the site could be turned into an ELSI marine lab.

And while Mochizuki did not find sufficiently hot water for his work, he might still be coming back to the island, or others nearby. That’s because he learned of a potentially much hotter spring at a spot where the sea hits one of the island’s steep cliffs – a site that requires boat access that was unsafe in the choppy waters during this particular visit.

In addition, McGlynn and Mochizuki did make some surprising discoveries, though they didn’t involve microbes, electron transfer or viruses.

During a morning visit to a different hot spring, they came across a team of what turned out to be officials of the Izu islands – all dressed in suits and ties. They were visiting Shikine-jima as part of a series of joint islands visit to assess economic development opportunities.

The officials were intrigued to learn what the scientists were up to, and made some suggestions of other spots to sample. One was an island occupied by Japanese self-defense forces and generally closed to outsiders. But the island is known to have areas of extremely hot water just below the surface of the land, sometimes up to 100 C (212 F.)

The officials gave their cards and told the scientists to contact them if they wanted to get onto that island for sampling. And as for the official from Shikine-jima, he was already thinking big.

“It would be a very good thing,” he said, “if you found the origin of life on our island.


Messy Chemistry: A New Way to Approach the Origins of Life

Astrobiologist and chemist Irena Mamajanov and prebiotic chemist Kuhan Chandru in their messy chemistry garb at the Earth-Life Science Institute (ELSI) in Tokyo. Mamajanov leads an effort at the institute to study a new “messy” path to understanding how some prebiotic chemical systems led to building blocks of life on early Earth. (Nerissa Escanlar)

More than a half century ago, Stanley Miller and Harold Urey famously put water and gases believed to make up the atmosphere of early Earth into a flask with water, sparked the mix with an electric charge, and produced amino acids and other chemical building blocks of life.

The experiment was hailed as a ground-breaking reproduction of how the essential components of life may have been formed, or at least a proof of concept that important building blocks of life could be formed from more simple components.

Little discussed by anyone outside the origins of life scientific community was that the experiment also produced a lot of a dark, sticky substance, a gooey tar that covered the beaker’s insides. It was dismissed as largely unimportant and regrettable then, and in the thousands of parallel origins of life experiments that followed.

Today, however, some intrepid researchers are looking at the tarry residue in a different light.

Tarry residue from an experiment — a common result when organic compounds are heated.

Just maybe, they argue, the tar was equally if not more important as those prized amino acids (which, after all, were hidden away in the tar until they were extracted out.) Maybe the messy tar – produced by the interaction of organic compounds and an energy source — offers a pathway forward in a field that has produced many advances but ultimately no breakthrough.

Those now studying the tar call their research “messy chemistry,” as opposed to the “clean” chemistry that focused on the acclaimed organic compounds.

There are other centers where different versions of “messy chemistry” research are under way — including George Cody’s lab at the Carnegie Institution for Sciences and Nicholas Hud’s at the Georgia Institute of Technology — but it is probably most concentrated at the Earth-Life Science Institute in Tokyo (ELSI.)

There, messy chemistry is viewed as an ignored but promising way forward, and almost a call to arms.

“In classical origin-of-life synthetic chemistry and biology you’re looking at one reaction and analyzing its maximum result. It’s A+B = C+D,” said Irena Mamajanov, an astrobiologist with a background in chemistry who is now a principal investigator ELSI and head of the overall messy chemistry project.

“But life is not like that; it isn’t any single reaction. They’re looking at a subset of reactions and we ask: ‘Why not look at the whole complex system?’”


Irena Mamajanov of ELSI, with colleague Yuki Suna, synthesizes particular complex molecules similar to enzymes to explore the many pathways that could have been involved in the production of actual early enzymes. The term “messy chemistry” grew out of a prebiotic chemistry conference at the Carnegie Institution for Science in Washington several years ago.  (Nerissa Escanlar)

There’s a scientific lineage here – researchers have worked with complex systems and reaction systems in many fields, and in principle this is the same. It’s taking a “systems” approach and applying it to that black box period on Earth when non- biological chemicals were slowly transformed (or transformed themselves) into chemical systems with the attributes of “life.”

The messy chemistry work is getting noticed, and Mamajanov was a featured speaker on the “New Approaches to the Origins of Life” plenary at the 2017 Astrobiology Science Conference, in Mesa, Arizona. At ELSI alone, researchers have been working on messy chemistry using metals, using electricity, using radioactivity, using computational chemistry and using analytical chemistry to tease out patterns and structure in the tars.

Mamajanov says this messy chemistry approach – which she learned to some extent as a fellow at both Carnegie and Georgia Tech — makes intuitive, as well as scientific sense because life is nothing if not complex.

Wouldn’t it be logical for the origin of life to be found in some of the earliest complex systems on Earth, rather than in looking for straight-line processes that progress almost independent of all the chemistry happening around them?

It stands to reason that the gunky tar played a role, she said, because tars allow some essential processes to occur. Tars can concentrate compounds, can encapsulate them, and can provide a kind of primitive (messy) scaffolding that could eventually evolve into the essential backbones of a living entity.


Stanley Miller and the iconic Miller-Urey experiment in 1952. The experiment added some of the chemicals thought to be in the Early Earth atmosphere, some water, and an electric charge. The result was the creation of some building blocks of life (amino acids, nucleotides) and lots of what was long considered a problematic residue of tar.

It’s the structure, in fact, that stands out as a particularly promising aspect of messy chemistry. More traditional synthetic biology is looking for simple molecular structures created by clean reactions, while messy chemistry is doing the opposite.

The goal of messy chemists is to see what interesting chemical processes take place within a defined portion of the messy, complex sample. What unexpected, surprising compounds or chemical structures might be formed? And how might they shed light on the process of chemical self-organization and more generally the origin of life question?

In her lab on the basement floor of the ELSI main building, Mamajanov works with colleagues to synthesize her messy molecules and push further into understanding their structures, their potential ability to adapt, and their suitability as possible precursors to the RNA and DNA molecules that characterize life.

Her specific area of study is hyperbranched polymers – three-dimensional, tree-shaped chains of repeating molecules that connect with other similar molecules. The result is globular, presents multitudes of chemical reactions and has some hidden and protected spaces inside their globs.  Related synthetic, or bio-mimicked chemicals (i.e., modeled on biological compounds and processes) have been used by the drug industry for some time.

With these hyperbranched polymers, Mamajanov has worked to produce pathways within the messy systems where the polymers show characteristics of evolvability.

Hyperbranch polymers exist in nature, most prominently in the process that petroleum oil is form, but are also made synthetically for research.  The tar that Mamajamov makes out of the chemicals is greasy but clear rather than brownish.

Her hyperbranched polymers are synthetic, as are those of noted synthetic chemists–in-search-of-biology such as Steven Benner, at the Foundation for Applied Molecular Evolution and Gerald Joyce of the Scripps Institute.

But the starting points are quite different, as are the goals. The two men are working to create clean chemical systems that produce the building block molecules that they want, but without the tar.  Mamajamov is intentionally making tar.

Eric Smith, a specialist in complexity systems, physics and chemistry who is also at ELSI sees the messy approach as containing the seeds of an important new way forward. “What is now called messy chemistry used to be completely out of the mainstream,” he said. “That is no longer the case.”

Smith described how John Sutherland of the Laboratory of Molecular Biology at Cambridge, U.K. won accolades for his work on the prebiotic assembly of important building blocks for RNA, using controlled chemistry that avoided all the messiness.

But he was also criticized later for using a such a controlled model – early Earth, after all, did not have any outside controller – and Smith said Sutherland is incorporating the messier side of prebiotic chemistry today, although tar remains an enemy rather than a potential friend.

“Now he’s going back to a one pot synthesis, allowing reactions that would have to be less controlled than what he was doing before,” Smith said of Sutherland. “He may do it in a way quite different from Irena and others involved in messy chemistry, but it seems to allow for many more complex reactions.”

Eric Smith is a senior scientist at ELSI steeped in the world of complex systems. (Nerissa Escanlar)

And complexity is indeed the desired endpoint. Not simply repetitive reactions and not random ones, but rather reactions that are very complex but ultimately structured.

This is where another novel aspect of the messy chemistry approach comes into play: Mamajanov and others at ELSI are collaborating with practitioners of “artificial chemistry,” computer simulated versions of what could be happening in messy interactions.

The work is being done primarily by Nathaniel Virgo, an artificial life specialist who uses computing to learn about how chemical systems behave once you leave the laboratory world where the number of chemical components is small and controlled.

And his big question: “Are there situations in which you can get ‘order from disorder’ in chemistry – to start with a messy system and have it spontaneously become more ordered? If so, what kinds of conditions are required for this to happen, and what kinds of ordered states can result?

Mamajanov needs Virgo’s computations to analyze and project forward what a messy chemical system might do, since the sheer number of possible chemical reactions involved is huge. And Virgo needs the messy chemistry as a test bed of sorts for his abstracted questions about, in effect, making order out of what appears to be chaos. They are, for each other, hypothesis-generating machines.

Virgo pointed to several primary reasons why computational work is important for answering the question of creating order from disorder (and ultimately, he is convinced, life from non-life.)

“The first is simply that studying messy chemistry experimentally is really hard. If you have a test tube containing a mess, it takes a lot of work to find out what molecules are in it, and basically impossible to know what reactions are happening, at least not without an enormous amount of work. In contrast, in a simulation you know exactly what molecules and reactions are present, even if there are millions of different types.”

Nathaniel Virgo is a principal investigator at the Earth-Life Science Institute and specialist in artificial life.  (Nerissa Escanlar)

The second reason involves the fundamental issue of studying specific chemical systems versus studying general mechanisms.

“As a complex systems scientist, I first want to know what, in general, is required, for a given phenomenon to occur. Once this is known, it should become clear which real systems will exhibit the right kinds of properties.

“This allows us to narrow down the vast space of possible hypotheses for the origins of life, rather than simply testing them one at a time. It should also give us some insight into the question of whether life might be possible with completely different kinds of chemistry than the protein-nucleic acid-metabolite chemistry we have on Earth.

From his studies he has found that in messy chemical systems, chemical self-production occurs and tht the systems can change dramatically in response to small changes such as an increased temperature.

“This suggests that messy chemistry is fundamentally qualitatively different from clean chemistry – adding more species doesn’t just mean the system gets harder to study, it also means that fundamentally new things can happen.”

And in the origins of life world, things are happening.




Nobel Laureate Jack Szostak: Exoplanets Gave The Origin of Life Field a Huge Boost

Jack Szostak, Nobel laureate and pioneering researcher in the origin-of-life field, was the featured speaker at a workshop this week at the Earth-Life Science Institute (ELSI) in Tokyo.  One goal of his Harvard lab is to answer this once seemingly impossible question:  was the origin of life on Earth essentially straight-forward and “easy,” or was it enormously “hard” and consequently rare in the universe. (Nerissa Escanlar)

Sometimes tectonic shifts in scientific disciplines occur because of discoveries and advances in the field.  But sometimes they occur for reasons entirely outside the field itself.  Such appears to be case with origins-of-life studies.

Nobel laureate Jack Szostak was recently in Tokyo to participate in a workshop at the Earth-Life Science Institute (ELSI) at the Tokyo Institute of Technology on “Reconstructing the Phenomenon of Life To Retrace the Emergence of Life.”

The talks were technical and often cutting-edge, but the backstory that Szostak tells of why he and so many other top scientists are now in the origins of life field was especially intriguing and illuminating in terms of how science progresses.

Those ground-shifting discoveries did not involve traditional origin-of-life questions of chemical transformations and pathways.  They involved exoplanets.

“Because of the discovery of all those exoplanets, astronomy has been transformed along with many other fields,” Szostak said after the workshop.

“We now know there’s a large range of planetary environments out there, and that has stimulated a huge amount of interest in where else in the universe might there be life.  Is it just here?  We know for sure that lots of environments could support life and we also would like to know:  do they?

“This has stimulated much more laboratory-based work to try to address the origins question.  What’s really important is for us to know whether the transition from chemistry to biology is easy and can happen frequently and anywhere, or are there one or many difficult steps that make life potentially very rare?”

In other words, the explosion in exoplanet science has led directly to an invigorated scientific effort to better understand that road from a pre-biotic Earth to a biological Earth — with chemistry that allows compounds to replicate, to change, to surround themselves in cell walls, and to grow ever more complex.

With today’s increased pace of research, Szostak said, the chances of finding some solid answers have been growing.  In fact, he’s quite optimistic that an answer will ultimately be forthcoming to the question of how life began on Earth.

“The field is making real progress in understanding the pathway from pre-biotic chemistry to the earliest life,” Szostak told.  “We think this is a difficult but solvable problem.”

And any solution would inevitably shed light on both the potential make-up and prevalence of extraterrestrial life.


This artist’s concept depicts select planetary discoveries made by NASA’s Kepler space telescope.  With more than 4,000 confirmed exoplanets and estimates now that there are billions upon billions more, the question of whether some are inhabited has taken on a new urgency requiring the expertise of scientists from a wide range of fields. (NASA/W. Stenzel)


Whether it’s ultimately solvable or not, that pathway from non-life to life would appear to be nothing if not winding and complex.  And since it involves trying to understand something that happened some 4 billion years ago, the field has had its share of fits and starts.

It is no trivial fact that probably the biggest advance in modern origin-of-life science — the renown Miller-Urey experiment that produced important-for-life amino acids out of a sparked test tube filled with  gases then believed to be prevalent on early Earth — took place more than 60 years ago.

Much has changed since then, including an understanding that the gases used by Miller and Urey most likely did not reflect the early Earth atmosphere.  But no breakthrough has been so dramatic and paradigm shifting since Miller-Urey.  Scientists have toiled instead in the challenging terrain of how and why a vast array of chemicals associated with life just might be the ones crucial to the enterprise.

But what’s new, Szostak said, is that the chemicals central to the pathway are much better understood today. So, too, are the mechanisms that help turn non-living compounds into self-replicating complex compounds, the process through which protective yet fragile cell walls can be formed, and the earliest dynamics involved in the essential task of collecting energy for a self-replicating chemical system to survive.

The simple protocells that may have enabled life to develop four billion years ago consist of only genetic material surrounded by a fatty acid membrane. This pared down version of a cell—which has not yet been completely recreated in a laboratory—is thought to have been able to grow, replicate, and evolve. (Howard Hughes Medical Institute)

This search for a pathway is a major international undertaking; a collective effort involving many labs where obstacles to understanding the origin-of-life process are being overcome one by one.

Here’s an example from Szostak:  The early RNA replicators needed the element magnesium to do their copying.  Yet magnesium destroyed the cell membranes needed to protect the RNA.

A possible solution was to find potential acids to bond with magnesium and protect the membranes, while still allowing the element to be available for RNA chemistry.  His team found that citric acid, or citrate, worked well when added to the cells.  Problem solved, in the lab at least.

The Szostak lab at Harvard University and the Howard Hughes Medical Institute has focused on creating “protocells” that are engineered by researchers yet can help explain how origin-of-life processes may have taken place on the early Earth.

Their focus, Szostak said, is on “what happens when we have the right molecules and how do they get together to form a cell that can grow and divide.”

It remains a work in progress, but Szostak said much has been accomplished. Protocells have been engineered with the ability to replicate, to divide, to metabolize food for energy and to form and maintain a protective membrane.

The perhaps ultimate goal is to develop a protocell with with the potential for Darwinian evolution.  Were that to be achieved, then an essentially full system would have been created.

How did something alive emerge from a non-living world? It’s a question as old as humanity and seems to pose more questions with every answer.  But Szostak (and some others) are convinced that the problem will in time prove to be solvable. Here blue-green algae in Morning Glory Pool, Yellowstone National Park, Wyoming.

Just as the discovery of a menagerie of exoplanets jump-started the origin of life field, it also changed forever its way of doing business.

No longer was the field the singular realm of chemists, but began to take in geochemists, planetary scientists, evolutionary biologists, atmospheric scientists and even astronomers (one of whom works in Szostak’s lab.)

“A lot of labs are focused on different points in the process,” he said.  “And because origins are now viewed as a process, that means you need to know how planets are formed and what happens on the planetary surface and in the atmospheres when they’re young.

“Then there’s the question of essential volatiles (such as nitrogen, water, carbon dioxide, ammonia, hydrogen, methane and sulfur dioxide); when do they come in and are they too much or not enough.”

These were definitely not issues of importance to Stanley Miller and Harold Urey when they sought to make building blocks of life from some common gases and an electrical charge.

But seeing the origin of life question as a long pathway as opposed to a singular event leaves some researchers cold.   With so many steps needed, and with the precisely right catalysts and purified compounds often essential to allow the next step take place, they argue that these pathways produced in a chemistry lab are unlikely to have anything to do with what actually happened on Earth.

Szostak disagrees, strongly.  “That just not true.  The laws of chemistry haven’t changed since early Earth, and what we’re trying to understand is the fundamental chemistry of these compounds associated with life so we can work out plausible pathways.”

If and when a plausible chemical pathway is established, Szostak said,  it would then be time to turn the scientific process around and see if there is a possible model for the presence of the needed pathway ingredients on early Earth.

And that involves the knowledge of geochemists, researchers expert in photochemistry and planetary scientists who have insight into what conditions were like at a particular time.


Szostak and David Deamer, an evolutionary biologist at the University of California, Santa Cruz, at the ELSI origins workshop.  Deamer supports the view that life on Earth may well have begun in and around hydrothermal springs on land.  That’s where essential compounds could concentrate, where energy was present and organic compounds on interstellar dust could have landed, as they do today. (Nerissa Escanlar)


Given the work that Szostak, his group and others have done to understand possible pathways that lead from simple starting materials to life, the inevitable question is whether there was but one pathway or many.

Szostak is of the school that there may well have been numerous pathways that resulted in life, although only one seems to have won out.  He bases his view, in part at least, on a common experience in his lab.  He and his colleagues can bang their collective heads together for what seems forever on a hard problem only to later find there was not one or two but potentially many answers to it.

An intriguing implication of this “many pathways” hypothesis is that it would seemingly increase the possibility of life starting beyond Earth.  The underlying logic of Szostak’s approach is to find how chemicals can interact to form life-like and then more complex living systems within particular environments.  And those varied environments could be on early Earth or on a planet or moon far away.

“All of this looked very, very hard at the start, trying to identify the pathways that could lead to life.  And sure, there are gaps remaining in our understanding.  But we’ve solved a lot of problems and the remaining big problems are a rather small number.  So I’m optimistic we’ll find the way.”

“And when we get discouraged about our progress I think, you know, life did get started here.  And actually it must quite simple.  We’re just not smart enough to see the answer right away.

“But in the end it generally turns out to be simple and you wonder 20 years later, why didn’t we think of that before?”