The Kepler Space Telescope Mission Is Ending But Its Legacy Will Keep Growing.

Facebooktwittergoogle_plusredditpinterestlinkedinmail
An illustration of the Kepler Space Telescope, which is on its very last legs.  As of October 2018, the planet-hunting spacecraft has been in space for nearly a decade. (NASA via AP)

 

The Kepler Space Telescope is dead.  Long live the Kepler.

NASA officials announced on Tuesday that the pioneering exoplanet survey telescope — which had led to the identification of almost 2,700 exoplanets — had finally reached its end, having essentially run out of fuel.  This is after nine years of observing, after a malfunctioning steering system required a complex fix and change of plants, and after the hydrazine fuel levels reached empty.

While the sheer number of exoplanets discovered is impressive the telescope did substantially more:  it proved once and for all that the galaxy is filled with planets orbiting distant stars.  Before Kepler this was speculated, but now it is firmly established thanks to the Kepler run.

It also provided data for thousands of papers exploring the logic and characteristics of exoplanets.  And that’s why the Kepler will indeed live long in the world of space science.

“As NASA’s first planet-hunting mission, Kepler has wildly exceeded all our expectations and paved the way for our exploration and search for life in the solar system and beyond,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington.

“Not only did it show us how many planets could be out there, it sparked an entirely new and robust field of research that has taken the science community by storm. Its discoveries have shed a new light on our place in the universe, and illuminated the tantalizing mysteries and possibilities among the stars.”

 

 


The Kepler Space Telescope was focused on hunting for planets in this patch of the Milky Way. After two of its four spinning reaction wheels failed, it could no longer remain steady enough to stare that those distant stars but was reconfigured to look elsewhere and at a different angle for the K2 mission. (Carter Roberts/NASA)

 

Kepler was initially the unlikely brainchild of William Borucki, its founding principal investigator who is now retired from NASA’s Ames Research Center in California’s Silicon Valley.

When he began thinking of designing and proposing a space telescope that could potentially tell us how common distant exoplanets were — and especially smaller terrestrial exoplanets like Earth – the science of extra solar planets was at a very different stage.

William Borucki, originally the main champion for the Kepler idea and later the principal investigator of the mission. His work at NASA went back to the Apollo days. (NASA)

“When we started conceiving this mission 35 years ago we didn’t know of a single planet outside our solar system,” Borucki said.  “Now that we know planets are everywhere, Kepler has set us on a new course that’s full of promise for future generations to explore our galaxy.”

The space telescope was launched in 2009.  While Kepler did not find the first exoplanets — that required the work of astronomers using a different technique of observing based on the “wobble” of stars caused by orbiting planets — it did change the exoplanet paradigm substantially.

Not only did it prove that exoplanets are common, it found that planets outnumber stars in our galaxy (which has hundreds of billions of those stars.)

In addition it found that small, terrestrial-size planets are common as well, with some 20 to 50 percent of stars likely to have planets of that size and type.  And what menagerie of planets it found out there.

Astrophysicist Natalie Batalha was the Kepler project and mission scientist for a decade. She left NASA recently for the University of California at Santa Cruz “to carry on the Kepler legacy” by creating an interdisciplinary center for the study of planetary habitability.

Among the greatest surprises:  The Kepler mission provided data showing that the most common sized planets in the galaxy fall somewhere between Earth and Neptune, a type of planet that isn’t present in our solar system.

It found solar systems of all sizes as well, including some with many planets (as many as eight) orbiting close to their host star.

The discovery of these compact systems, generally orbiting a red dwarf star, raised questions about how solar systems form: Are these planets “born” close to their parent star, or do they form farther out and migrate in?

So far, more than 2,500 peer-reviewed papers have been published using Kepler data, with substantial amounts of that data still unmined.

Natalie Batalha was the project and mission scientist for Kepler for much of its run, and I asked her about its legacy.

“When I think of Kepler’s influence across all of astrophysics, I’m amazed at what such a simple experiment accomplished,” she wrote in an email. “You’d be hard-pressed to come up with a more boring mandate — to unblinkingly measure the brightnesses of the same stars for years on end. No beautiful images. No fancy spectra. No landscapes. Just dots in a scatter plot.

“And yet time-domain astronomy exploded. We’d never looked at the Universe quite this way before. We saw lava worlds and water worlds and disintegrating planets and heart-beat stars and supernova shock waves and the spinning cores of stars and planets the age of the galaxy itself… all from those dots.”

 

The Kepler-62 system is put one of many solar systems detected by the space telescope. The planets within the green discs are in the habitable zones of the stars — where water could be liquid at times. (NASA)

 

While Kepler provided remarkable answers to questions about the overall planetary makeup of our galaxy, it did not identify smaller planets that will be directly imaged, the evolving gold standard for characterizing exoplanets.  The 150,000 stars that the telescope was observing were very distant, in the range of a few hundred to a few thousand light-years away. One light year is about 6 trillion (6,000,000,000,000) miles.

Nonetheless, Kepler was able to detect  the presence of a handful of Earth-sized planets in the habitable zones of their stars.  The Kepler-62 system held one of them, and it is 1200 light-years away.  In contrast, the four Earth-sized planets in the habitable zone of the much-studied Trappist-1 system are 39 light-years away.

Kepler made its observations using the the transit technique, which looks for tiny dips in the amount of light coming from a star caused by the presence of a planet passing in front of the star.  While the inference that exoplanets are ubiquitous came from Kepler results, the telescope was actually observing but a small bit of the sky.  It has been estimated that it would require around 400 space telescopes like Kepler to cover the whole sky.

What’s more, only planets whose orbits are seen edge-on from Earth can be detected via the transit method, and that rules out a vast number of exoplanets.

The bulk of the stars that were selected for close Kepler observation were more or less sun-like, but a sampling of other stars occurred as well. One of the most important factors was brightness. Detecting minuscule changes in brightness caused by transiting planet is impossible if the star is too dim.

 

The artist’s concept depicts Kepler-186f, the first validated Earth-size planet to orbit a distant star in the habitable zone. (NASA Ames/SETI Institute/JPL-Caltech)

 

Four years into the mission, after the primary mission objectives had been met, mechanical failures temporarily halted observations. The mission team was able to devise a fix, switching the spacecraft’s field of view roughly every three months. This enabled an extended mission for the spacecraft, dubbed K2, which lasted as long as the first mission and bumped Kepler’s count of surveyed stars up to more than 500,000.

But it was inevitable that the mission would come to an end sooner rather than later because of that dwindling fuel supply, needed to keep the telescope properly pointed.

Kepler cannot be refueled because NASA decided to place the telescope in an orbit around the sun that is well beyond the influence of the Earth and moon — to simplify operations and ensure an extremely quiet, stable environment for scientific observations.  So Kepler was beyond the reach of any refueling vessel.  The Kepler team compensated by flying considerably more fuel than was necessary to meet the mission objectives.

The video below explains what will happen to the Kepler capsule once it is decommissioned.  But a NASA release explains that the final commands “will be to turn off the spacecraft transmitters and disable the onboard fault protection that would turn them back on. While the spacecraft is a long way from Earth and requires enormous antennas to communicate with it, it is good practice to turn off transmitters when they are no longer being used, and not pollute the airwaves with potential interference.”

 

 

And so Kepler will actually continue orbiting for many decades, just as its legacy will continue long after operations cease.

Kepler’s follow-on exoplanet surveyor — the Transiting Exoplanet Survey Satellite or TESS — was launched this year and has begun sending back data.  Its primary mission objective is to survey the brightest stars near the Earth for transiting exoplanets. The TESS satellite uses an array of wide-field cameras to survey some 85% of the sky, and is planned to last for two years.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

15,000 Galaxies in One Image

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Astronomers have just assembled one of the most comprehensive portraits yet of the universe’s evolutionary history, based on a broad spectrum of observations by the Hubble Space Telescope and other space and ground-based telescopes.  Each of the approximately 15,000 specks and spirals are galaxies, widely distributed in time and space. (NASA, ESA, P. Oesch of the University of Geneva, and M. Montes of the University of New South Wales)

Here’s an image to fire your imagination: Fifteen thousand galaxies in one picture — sources of light detectable today that were generated as much as 11 billion years ago.

Of those 15,000 galaxies, some 12,000 are inferred to be in the process of forming stars.  That’s hardly surprising because the period around 11 billions years ago has been determined to be the prime star-forming period in the history of the universe.  That means for the oldest galaxies in the image, we’re seeing light that left its galaxy but three billion years after the Big Bang.

This photo mosaic, put together from images taken by the Hubble Space Telescope and other space and ground-based telescopes, does not capture the earliest galaxies detected. That designation belongs to a galaxy found in 2016 that was 420 million years old at the time it sent out the photons just collected. (Photo below.)

Nor is it quite as visually dramatic as the iconic Ultra Deep Field image produced by NASA in 2014. (Photo below as well.)

But this image is one of the most comprehensive yet of the history of the evolution of the universe, presenting galaxy light coming to us over a timeline up to those 11 billion years.  The image was released last week by NASA and supports an earlier paper in The Astrophysical Journal by Pascal Oesch of Geneva University and a large team of others.

And it shows, yet again, the incomprehensible vastness of the forest in which we are a tiny leaf.

Some people apparently find our physical insignificance in the universe to be unsettling.  I find it mind-opening and thrilling — that we now have the capability to not only speculate about our place in this enormity, but to begin to understand it as well.

The Ultra-Deep field composite, which contains approximately 10,000 galaxies.  The images were collected over a nine-year period.  {NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)} 

For those unsettled by the first image, here is the 2014 Ultra Deep Field image, which is 1/14 times the area of the newest image.  More of the shapes in this photo look to our eyes like they could be galaxies, but those in the first image are essentially the same.

In both images, astronomers used the ultraviolet capabilities of the Hubble, which is now in its 28th year of operation.

Because Earth’s atmosphere filters out much ultraviolet light, the space-based Hubble has a huge advantage because it can avoid that diminishing of ultraviolet light and provide the most sensitive ultraviolet observations possible.

That capability, combined with infrared and visible-light data from Hubble and other space and ground-based telescopes, allows astronomers to assemble these ultra deep space images and to gain a better understanding of how nearby galaxies grew from small clumps of hot, young stars long ago.

The light from distant star-forming regions in remote galaxies started out as ultraviolet. However, the expansion of the universe has shifted the light into infrared wavelengths.

These images, then,  straddle the gap between the very distant galaxies, which can only be viewed in infrared light, and closer galaxies which can be seen across a broad spectrum of wavelengths.

The farthest away galaxy discovered so far is called GN-z11 and is seen now as it was 13.4 billion years in the past.  That’s  just 400 million years after the Big Bang.

GN-z11 is surprisingly bright infant galaxy located in the direction of the constellation of Ursa Major. Thus NASA video explains much more:

The farthest away galaxy ever detected — GN-z11. {NASA, ESA, P. Oesch (Yale University, Geneva University), G. Brammer (STScI), P. van Dokkum (Yale University), and G. Illingworth (University of California, Santa Cruz)} 

 

Galaxy formation chronology, showing GN-z11 in context. Hubble spectroscopically confirmed the farthest away galaxy to date. {NASA, ESA, P. Oesch and B. Robertson (University of California, Santa Cruz), and A. Feild (STScI)}

In addition representing cutting-edge science — and enabling much more — these looks into the most distant cosmic past offer a taste of what the James Webb Space Telescope, now scheduled to launch in 2021, is designed to explore.  It will have greatly enhanced capabilities to explore in the infrared, which will advance ultra-deep space observing.

But putting aside the cosmic mysteries that ultra deep space and time astronomy can potentially solve, the images available today from Hubble and other telescopes are already more than enough to fire the imagination about what is out there and what might have been out there some millions or billions of years ago.

A consensus of exoplanet scientists holds that each star in the Milky Way galaxy is likely to have at least one planet circling it, and our galaxy alone has billions and billions of stars.  That makes for a lot of planets that just might orbit at the right distance from its host star to support life and potentially have atmospheric, surface and subsurface conditions that would be supportive as well.

A look these deep space images raises the question of how many of them also house stars with orbiting planets, and the answer is probably many of them.  All the exoplanets identified so far are in the Milky Way, except for one set of four so far.

Their discovery was reported earlier this year by Xinyu Dai, an astronomer at the University of Oklahoma, and his co-author, Eduardo Guerras.  They came across what they report are planets while using NASA’s Chandra X-ray Observatory to study the environment around a supermassive black hole in the center of a galaxy located 3.8 billion light-years away from Earth.

In The Astrophysical Journal Letters , the authors report the galaxy is home to a quasar, an extremely bright source of light thought to be created when a very large black hole accelerates material around it. But the researchers said the results of their study indicated the presence of planets in a galaxy that lies between Earth and the quasar.

Furthermore, the scientists said results suggest that in most galaxies there are hundreds of free-floating planets for every star, in addition to those which might orbit a star.

The takeaway for me, as someone who has long reported on astrobiology and exoplanets, is that it is highly improbable that there are no other planets out there where life occurs, or once occurred.

As these images make clear, the number of planets that exist or have existed in the universe is essentially infinite.  That no others harbor life seems near impossible.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Back to the Future on the Moon

Facebooktwittergoogle_plusredditpinterestlinkedinmail
There have been no humans on the surface of the moon since the Apollo program ended in 1972.  Now, in addition to NASA, space agencies in India, China, Russia, Japan and Europe and developing plans to land humans on the moon. (NASA/Robin Lee)

What does NASA’s drive to return to the moon have to do with worlds of exoplanets and astrobiology that are generally discussed here?  The answer is actually quite a lot.

Not so much about the science, although current NASA plans would certainly make possible some very interesting science regarding humans living in deep space, as well as some ways to study the moon, Earth and our sun.

But it seems especially important now to look at what NASA and others have in mind regarding our moon because the current administration has made a top priority of returning landers and humans to there, prospecting for resources on the moon and ultimately setting up a human colony on the moon.

This has been laid out in executive directives and now is being translated into funding for NASA (and commercial) missions and projects.

There are at least two significant NASA projects specific to the moon initiative now planned, developed and in some cases funded.  They are the placement of a small space station that would orbit the moon, and simultaneously a series of robotic moon landings — to be conducted by commercial ventures but carrying NASA and other instruments from international and other commercial partners.

The goal is to start small and gradually increase the size of the landers until they are large enough to carry astronauts.

And the same growth line holds for the overall moon mission.  The often-stated goal is to establish a colony on the moon that will be a signal expansion of the reach of humanity and possibly a significant step towards sending humans further into space.

A major shift in NASA focus is under way and, most likely in the years ahead, a shift in NASA funding.

Given the potential size and importance of the moon initiative — and its potential consequences for NASA space science — it seems valuable to both learn more about it.

 

Cislunar space is, generally speaking, the area region between the Earth and the moon. Always changing because of the movements of the two objects.

Development work is now under way for what is considered to be the key near-term and moon-specific project.  It used to be called the the Deep Space Gateway as part of the Obama administration proposal for an asteroid retrieval mission, but now it’s the Lunar Orbital Platform-Gateway (LOP-G.)

If built, the four-person space station would serve as a quasi-permanent outpost orbiting the moon that advocates say would enhance exploration and later commercial exploitation of the moon.  It would provide a training area and safe haven for astronauts, could become a center for moon, Earth and solar science, and could continue and expand the international cooperation nurtured on the International Space Station (ISS) project for several decades.

In its Gateway Memorandum, published last month, NASA and the administration also made clear that the station would have, as a central goal, geopolitical importance.

As stated in the memorandum, “the next step in human spaceflight is the establishment of U.S. preeminence in cislunar space through the operations and the deployment of a U.S.-led lunar orbital platform,  “Gateway.”  (“Cislunar space” is the region lying  between the Earth and the moon.)

The administration requested $500 million for planning the LOP-G project in fiscal 2019.  The first component to be built and hopefully launched into cislunar space under the plan is the “power and propulsion element.”

 

An artist version of a completed Gateway spaceport with the Orion capsule approaching. (NASA)

Five companies have put together proposals for the “PPE,” and NASA officials have said they are ready to move ahead with procurement.

During a March meeting of the NASA Advisory Council’s human exploration and operations committee, Michele Gates, director of the Power and Propulsion Element at NASA Headquarters, said the agency will be ready to move ahead with procurement of the module when the five industry proposals are completed.

Some of those companies had been involved in studies for the cancelled Asteroid Redirect Mission and Gates said, “Our strategy is to leverage all of the work that’s been done, including on the Asteroid Redirect Mission.”

Five different companies have contracts to design possible space station habitation modules as well.

So the plan has some momentum.  If all moves ahead as described, NASA will launch the components of the Gateway in the early to mid 2020s.  More than a dozen international agencies have voiced interest in joining the project, including European, Japanese, Canadian and other ISS partners.

As part of that outreach, an informal partnership agreement has already been signed with Roscosmos, the Russian space agency, with the possibility of using a future Russian heavy rocket to help build the station and ferry crew.

 

Astronaut John Young of the Apollo 16 mission on the moon. The primary goal of the NASA moon initiative is to return astronauts to the surface.(NASA)

The other NASA moon initiative involves an effort to send many robotic landers to the moon to look for potential water and fuel (hydrogen) to be collected for a cislunar and ultimately lunar economy.

NASA had worked for some time on what was called a Resource Prospector, a mission to study water ice and other volatiles at the lunar poles.  But this spring NASA Administrator Jim Bridenstine announced the Prospector was being cancelled because it was not suited to the what is called the new Exploration Campaign — NASA’s concept for a series of missions that will initially use small, commercially developed landers, followed by larger landers.

So the Prospector project is now considered “too limited in scope for the agency’s expanded lunar exploration focus,” the agency said in a statement. “NASA’s return to the moon will include many missions to locate, extract and process elements across bigger areas of the lunar surface.”

The agency also says it will rely on private companies to design and build the landers, as well as launching them into space.

So these are the out-of-the gate projects NASA has in mind for the moon. They, however, are hardly where the big money is going.  That is directed to the heavy rocket under development and construction for more than a decade (the Space Launch System, or SLS) and the Orion space capsule.

They are designed to be the main conduits to the Gateway and perhaps beyond some day, and they have been enormously costly to build — at least $22 billion to construct up through 2021, NASA officials told the Government Accounting Office in 2014. And that doesn’t include the more costly second SLS rocket scheduled for 2023 with a crew aboard.

What’s more, it is estimated to cost at least $1.5 billion to launch each SLS/Orion voyage in years ahead.

 

Astronauts go into an Orion capsule mock-up. The un-manned spacecraft is expected to be ready for launch in 2020. (NASA/ Bill Stafford and Roger Markowitz)

 

Another mock-up of the inside of the Orion crew module, which carries four astronauts and is scheduled to launch in 2023. It has 316 cubic feet of habitable space, compared with 210 cubic feet for the Apollo capsules. (NASA)

 

Since this column is primarily about space and origins science, I was drawn to the conference held late Feb. in Denver — billed as the Deep Space Gateway Concept Science Workshop.  The idea, surely, was to share and showcase what science might be achievable on the mini-space station.

As you might imagine, a major scientific focus was on the challenges to humans of living in deep space and techniques that might be used to mitigate problems. Abstracts included studies of the effects of radiation on astronauts, on drugs, on food, on the immune system and more.

NASA and others have studied for years radiation and micro-gravity effects on astronauts aboard the International Space Station, but conditions in a deep space environment would be quite a bit different.  Probably most importantly, astronauts aboard the Gateway would be exposed to much more dangerous radiation than those in the ISS because that low-Earth orbit station is protected by the Van Allen radiation belts.

There was also an intriguing proposal to study the ability of lunar regolith (the rock, dust and gravel on the surface) to shield growing plants on the station from radiation, and others on the role and usefulness of plants and micro-organisms in deep space.

Scientists also proposed many different ways to study the moon, the Earth and the sun.  Harley Thronson of NASA Goddard, one of the moderators of the conference, said that sun scientists seemed especially excited by the opportunities the Gateway could offer.

As far as I could tell, there was but one proposal that involved astrobiology or exoplanets.  It was a plan by scientists from SETI and NASA Ames to study Earth with a spectrometer as a way to understand and measure potential bio-markers on exoplanets.

So there’s undoubtedly good science to be done on a lunar space port regarding human space flight, the moon, the Earth and sun.

What I wonder is this:  Will this new, intense and costly lunar focus on the moon take away from what I like to think of as The Golden Age of Space Science — the unending breakthroughs of recent decades in understanding planets and distant moons in our solar system, detecting and characterizing the billions and billions of exoplanets out there,  as well as revealing the structure and history of the cosmos.

 

The Sombrero Galaxy, as imaged by the Hubble Space Telescope, NASA’s Flagship observatory of the 1990s. The James Webb Space Telescope is delayed but is expected to provide the same remarkable images and science as Hubble once it’s up and working.  WFIRST, the planned flagship observatory of the 2020s was cancelled by the administration earlier this year because of a NASA funding shortfall, but its fate remains undecided. (NASA)

I’m not thinking about today but about when costly NASA flagship space observatories or major planetary missions come up for approval, or non-approval, in the future.  Will the funding, and the deep interest, still be there?

Others more knowledgeable about the mechanics of space travel also criticize the Gateway as a costly detour from what long has been considered the main goal of space exploration — sending humans to Mars — and as redundant when it comes to accessing and studying the moon.

On a more encouraged note, a lunar station and lunar base could become part of a much larger space architecture that will allow for all kinds of advances in the decades ahead.  This is precisely the kind of build-out that Thronson, who is Senior Scientist for Advanced Astrophysics Mission Concepts at NASA Goddard and Chief Technologist for the Cosmic Origins and Physics of the Cosmos Program Offices, has been working towards for years.

Ever mindful of the uses of such a space architecture, he pointed out one potential use of a lunar space station that is seldom heard:  If a powerful new telescope in deep space needs repair or upgrading, he wrote in an email, there’s no way to get humans to it now.  The Hubble Space Telescope could be fixed because it was not in deep space and astronauts could get to it.

Thronson sees a potential parallel use for the Gateway, as he described in an email. “My astronomy colleagues, including myself, have been for many years advocating using a Gateway-type facility to assemble, repair, and upgrade the next generation (and beyond) of major astronomical missions. Nothing beats having a human on site, if there are complicated activities that need to be carried out.”

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Birth and Death: A Theory of Relativity

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Irving Kaufman in Truro, Massachusetts, when a still-young 89.

I hope you will indulge me in this foray into a very different look at the many worlds in which we live.

My father is being buried today.  It is no tragedy;  he lived to almost 97 and had a full life.  But still…

As all of you have no doubt experienced in one way or another, there is a huge disconnect between the emotions we feel individually about a newcomer to our world or a departing elder and the arrival and departure of those we don’t know at all.

The birth of a loved child is as glorious as most anything can be.  And yet it is, in the larger picture, totally banal.  I found this figure:  By 2011, an estimated 107,602,707,800 humans had been born since the emergence of the species.

Same with death.  The death of a loved elder is a profound event.  And yet it, too, is banal.  One hundred billion of those born have also died.

There are a handful of exceptions to this dual reality. These births and deaths (and lives) are not viewed as banal but as historically important.  You can pick your own people for that list, but I bet they will be a group of people both very good and very bad, many of them talented and all of them charismatic.

But for the rest of us,  a particular birth and death are of enormous importance to very few.  It’s a kind of background noise.

Why am I writing about this now?

Clearly because I’m grieving and trying to make sense of the suffering and passing of my father.

But also because that grief — and the absence of grief all around me in New York City where he lived — speaks to that weird relativity in the emotional universe.  When you look closely at what reality is, the picture is very different from how things may feel inside.

 

The Hubble Ultra-Deep Field (HUDF) is an image of a small region of space in the constellation Fornax, composited from Hubble Space Telescope data.  The image looks back approximately 13 billion years (between 400 and 800 million years after the Big Bang) and will be used to search for galaxies that existed at that time. (NASA)

This is a dichotomy I’ve had to embrace as I learn and write about the cosmos.  Our human view of the world is, well, often quite lacking in perspective.

Our sense of time is another example.  We humans live within a story line where a life of 97 years is a very long one.  Although there are an increasing number of long-lived people — almost two million above age 90 in the United States — they remain a tiny percentage of the population.

In terms of Earth’s 4.5 million years of geological time,  my father’s 96 years is less than a blip.  And in astronomical time — the 13.7 billion years of the universe — they are completely inconsequential.

Our human lifetimes matter so much to us. But in the reality of time and space as they truly exist,  those lives mean virtually nothing.  Yet we persist in our great joys and sorrows.  “All the world’s a stage and all the men and women merely players,” wrote one of those people whose name and legend does live on. “They have their exits and their entrances, and one man in his time plays many parts…” I think my father would appreciate this stepped-back approach to his passing.

My mother, Mabel Kaufman, as drawn by her young husband in the late 1930s.  She died in 2006.

He was born poor in the South Bronx and became a soldier, student, artist, professor, poet and voracious reader.  His background included virtually no science study, but as I wrote more about space and life origins, he found those subjects to be increasingly interesting.  (They were a welcome reprieve for me from the political discussions he was inclined to wage in a take-no-prisoners style.)

He was not a religious man, but he did enjoy thinking and reading about subjects ranging from the beginning of the cosmos to theories of quantum life. I don’t think he would ever use this word, but he sought a kind of cosmic transcendence.

This was especially so after the passing of his wife of 63 years.  He was nearly crushed by his grief, but he gradually put together a life that continued with stubborn and hopefully satisfying independence for 11 years.

He told me for several years that he didn’t fear death.  He didn’t want to die and went to many doctors to try to keep going.  But he said he was ready to accept the end, and in his final weeks and days I came to see that he was  — especially as he lost his treasured independence and endured a not inconsiderable amount of suffering.

He slowly left after a week of refusing almost all food and water.  I’m told it’s a kind of animal path to dying. (No disrespect here, as we are animals, of course.)  And I think such a path is no tragedy, especially given his good fortune to have had almost 97 years on Earth.

Irv Kaufman as a young art professor at the University of Michigan.

I wrote a column early in my tenure at Many Worlds about Einstein and his ideas about “cosmic religion.” In it, I wrote about that part of Einstein’s thinking that gets less attention than it seems to deserve, to me at least.  And as I was thinking about my father’s passing, Einstein’s thoughts on cosmic religion came back to me.

No god, no unresolvable mysteries, no dogma.  Instead the wonderful and punishing laws of nature and the cosmos, and our good fortune to have some time living in them as human beings.  A kind of clear-eyed transcendence without all the religious trappings.

Thoughts of clear-eyed transcendence brought back to mind the most searing and surprising death and aftermath that I’ve witnessed.  When I was a reporter at The Philadelphia Inquirer, a charming young woman and her reporter husband were finally going to have a long-desired baby.  Well into the pregnancy, as I remember it, the woman starting getting very sick and was ultimately diagnosed with a fast-spreading cancer.

It was brutal, but she hung on and gave birth.  And then a few days later she died.

The entire Inquirer staff came to her funeral, and her husband got up to speak.  None of us knew what to expect, what someone in his place could possibly say.

But speak he did, and what he had to say was powerfully moving and instructive.  Yes, he had felt despair and anger at the awful turn of events, and, yes, what faith he had was shattered.

Then he spoke as if transported about the unexpected understanding that had come to him.

The death was an absolute tragedy and hideously unfair.  But out of it had come a beautiful, healthy boy.  Despite the horrible twist of fate, something precious had arrived.  The mother’s strength and grit had allowed a longed-for baby to survive.

And the husband ended with this reality lost in the grief:  had his wife not been pregnant, she still would have died of cancer. But she would have died without a lovely child delivered to the world.

Grief and joyful transcendence. There was not a dry eye in the huge crowd and not a heart that had not been lifted.

My father’s death will effect far fewer people than the one I just described.  The emotional punch of his passing has less force because he lived fully and because so many of his contemporaries are gone.

But the emotional dichotomy is still there and cries out for transcendence.  Each life is so important and yet so unimportant.  How do we make sense of that?

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

How to Give Mars an Atmosphere, Maybe

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Many Worlds site has been down for almost two weeks following the crash of the server used to publish it.  We never expected it would take quite this long to return to service, but now we are back with a column today and another one for early next week.

An artist rendering of what Mars might look like over time if efforts were made to give it an artificial magnetic field to then enrich its atmosphere and made it more hospitable to human explorers and scientists. (NASA)

Earth is most fortunate to have vast webs of magnetic fields surrounding it. Without them, much of our atmosphere would have been gradually torn away by powerful solar winds long ago, making it unlikely that anything like us would be here.

Scientists know that Mars once supported prominent magnetic fields as well, most likely in the early period of its history when the planet was consequently warmer and much wetter. Very little of them is left, and the planet is frigid and desiccated.

These understandings lead to an interesting question: if Mars had a functioning magnetosphere to protect it from those solar winds, could it once again develop a thicker atmosphere, warmer climate and liquid surface water?

James Green, director of NASA’s Planetary Science Division, thinks it could. And perhaps with our help, such changes could occur within a human, rather than an astronomical, time frame.

In a talk at the NASA Planetary Science Vision 2050 Workshop at the agency’s headquarters, Green presented simulations, models, and early thinking about how a Martian magnetic field might be re-constituted and the how the climate on Mars could then become more friendly for human exploration and perhaps communities.

It consisted of creating a “magnetic shield” to protect the planet from those high-energy solar particles. The shield structure would consist of a large dipole—a closed electric circuit powerful enough to generate an artificial magnetic field.

Simulations showed that a shield of this sort would leave Mars in the relatively protected magnetotail of the magnetic field created by the object. A potential result: an end to largescale stripping of the Martian atmosphere by the solar wind, and a significant change in climate.

“The solar sytstem is ours, let’s take it,” Green told the workshop. “And that, of course, includes Mars. But for humans to be able to explore Mars, together with us doing science, we need a better environment.”

 

An artificial magnetosphere of sufficient size generated at L1 – a point where the gravitational pull of Mars and the sun are at a rough equilibrium — allows Mars to be well protected by what is known as the magnetotail. The L1 point for Mars is about 673,920 miles (or 320 Mars radii) away from the planet. In this image, Green’s team simulated the passage of a hypothetical extreme Interplanetary Coronal Mass Ejection at Mars. By staying inside the magnetotail of the artificial magnetosphere, the Martian atmosphere lost an order of magnitude less material than it would have otherwise. (J. Green)

Is this “terraforming,” the process by which humans make Mars more suitable for human habitation? That’s an intriguing but controversial idea that has been around for decades, and Green was wary of embracing it fully.

“My understanding of terraforming is the deliberate addition, by humans, of directly adding gases to the atmosphere on a planetary scale,” he wrote in an email.

“I may be splitting hairs here, but nothing is introduced to the atmosphere in my simulations that Mars doesn’t create itself. In effect, this concept simply accelerates a natural process that would most likely occur over a much longer period of time.”

What he is referring to here is that many experts believe Mars will be a lot warmer in the future, and will have a much thicker atmosphere, whatever humans do. On its own, however, the process will take a very long time.

To explain further, first a little Mars history.

Long ago, more than 3.5 billion years in the past, Mars had a much thicker atmosphere that kept the surface temperatures moderate enough to allow for substantial amounts of surface water to flow, pool and perhaps even form an ocean. (And who knows, maybe even for life to begin.)

But since the magnetic field of Mars fell apart after its iron inner core was somehow undone, about 90 percent of the Martian atmosphere was stripped away by charged particles in that solar wind, which can reach speeds of 250 to 750 kilometers per second.

Mars, of course, is frigid and dry now, but Green said the dynamics of the solar system point to a time when the planet will warm up again.

 

James Green, the longtime director of NASA’s Planetary Science Division. (NASA)

 

He said that scientists expect the gradually increasing heat of the sun will warm the planet sufficiently to release the covering of frozen carbon dioxide at the north pole, will start water ice to flow, and will in time create something of a greenhouse atmosphere. But the process is expected to take some 700 millon years.

“The key to my idea is that we now know that Mars lost its magnetic field long ago, the solar wind has been stripping off the atmosphere (in particular the oxygen) ever since, and the solar wind is in some kind of equilibrium with the outgassing at Mars,” Green said. (Outgassing is the release of gaseous compounds from beneath the planet’s surface.)

“If we significantly reduce the stripping, a new, higher pressure atmosphere will evolve over time. The increase in pressure causes an increase in temperature. We have not calculated exactly what the new equilibrium will be and how long it will take.”

The reason why is that Green and his colleagues found that they needed to add some additional physics to the atmospheric model, dynamics that will become more important and clear over time. But he is confident those physics will be developed.

He also said that the European Space Agency’s Trace Gas Orbiter now circling Mars should be able to identify molecules and compounds that could play a significant role in a changing Mars atmosphere.

So based on those new magnetic field models and projections about the future climate of Mars, when might it be sufficiently changed to become significantly more human friendly?

Well, a relatively small change in atmospheric pressure can stop an astronaut’s blood from boiling, and so protective suits and clothes would be simpler to design. But the average daily range in temperature on Mars now is 170 degrees F, and it will take some substantial atmospheric modification to make that more congenial.

Green’s workshop focused on what might be possible in the mid 21st century, so he hopes for some progress in this arena by then.

 

This image combines depicts an orbital view of the north polar region of Mars, based on data collected from two instruments aboard NASA’s Mars Global Surveyor, depicts an orbital view of the north polar region of Mars. About 620 miles across, the white sections are primarily water ice. Frozen carbon dioxide accumulates as a comparatively thin layer about one meter thick on the north cap in the northern winter only. NASA/JPL-Caltech/MSSS

 

One of many intriguing aspects of the paper is its part in an NASA effort to link fundamental models together for everything from predicting global climate to space weather on Mars.

The modeling of a potential artificial magnetosphere for Mars relied, for instance, on work done by NASA heliophysics – the quite advanced study of our own sun.

Chuanfei Dong, an expert on space weather at Mars, is a co-author on the paper and did much of the modeling work. He is now a postdoc at Princeton University, where he is supported by NASA.

He used the Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme (BATS-R-US) model to test the potential shielding effect of an artificial magnetosphere, and found that it was substantial when the magnetic field created was sufficiently strong.  Substantial enough, in fact, to greatly limit the loss of Martian atmosphere due to the solar wind.

As he explained, the artificial dipole magnetic field has to rotate to prevent the dayside reconnection, which in turn prevents the nightside reconnection as well.

If the artificial magnetic field does not block the solar winds properly, Mars could lose more of its atmosphere. That why the planet needs to be safely within the magnetotail of the artificial magnetosphere.

In their paper, the authors acknowledge that the plan for an artificial Martian magnetosphere may sound “fanciful,” but they say that emerging research is starting to show that a miniature magnetsphere can be used to protect humans and spacecraft.

In the future, they say, it is quite possible that an inflatable structure can generate a magnetic dipole field at a level of perhaps 1 or 2 Tesla (a unit that measures the strength of a magnetic field) as an active shield against the solar wind. In the simulation, the magnetic field is about 1.6 times strong than that of Earth.

 

A Mars with a magnetic field and consequently a thicker atmosphere would not likely be particularly verdant anytime soon. But it might make a human presence there possible.

 

As a summary of what Green and others are thinking, here is the “results” section of the short paper:

“It has been determined that an average change in the temperature of Mars of about 4 degrees C will provide enough temperature to melt the CO2 veneer over the northern polar cap.

“The resulting enhancement in the atmosphere of this CO2, a greenhouse gas, will begin the process of melting the water that is trapped in the northern polar cap of Mars. It has been estimated that nearly 1/7th of the ancient ocean of Mars is trapped in the frozen polar cap. Mars may once again become a more Earth-like habitable environment.

The results of these simulations will be reviewed (with) a projection of how long it may take for Mars to become an exciting new planet to study and to live on.”

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail