Artificial Intelligence Has Just Found Two Exoplanets: What Does This Mean For Planet Hunting?

Facebooktwittergoogle_plusredditpinterestlinkedinmail
There are now two known eight-planet solar systems in the galaxy. Artificial intelligence was used to comb through the data collected three years ago by the Kepler Space Telescope and its algorithms helped find Kepler 90-1, the eight planet in that solar system.  (NASA)

By Elizabeth Tasker

The media was abuzz last week with the latest NASA news conference. A neural network — a form of artificial intelligence or machine learning — developed at Google had found two planets in data previously collected by NASA’s prolific Kepler Space Telescope. It’s a technique that could ultimately track-down our most Earth-like planets.

The new exoplanets orbit stars already known to host planetary systems, Kepler-90 and Kepler-80. While both are only slightly larger than the Earth, their two-week orbits makes these worlds too hot to be considered likely candidates for hosting life. Moreover, the systems are thousands of light years away, putting the planets out of range of atmospheric studies that could test their habitability.

With over 3,500 exoplanets already discovered, you might be forgiven for finding these additions underwhelming. However, while other planets in the same system have been known about for several years, these two Earth-sized worlds were previously overlooked. The difference is not a new telescope, but an exploration of the data with a different kind of brain.

The Kepler Space Telescope searches for planets using the transit technique; detecting small dips in amount of starlight as the planet passes in front of the star. As planets are much smaller than stars, picking out this tiny light drop is a tricky task. For a Jupiter-sized planet orbiting a star like our Sun, the decrease in brightness is only about 1%. For an Earth-sized planet, the signal becomes so small it is right on the edge of what Kepler is able to detect. This makes their dim wink extremely difficult to spot in the data.

Kepler Space Telescope collected data on planet transits around distant stars for four years, and the information has provided  — and will continue providing —  a goldmine for planet hunters.  A severe malfunction in 2013 had robbed Kepler of its ability to stay pointed at a target without drifting off course, but the spacecraft was stabilized and readjusted to observe a different set of stars.  (NASA)

The discovery paper published in the Astronomical Journal combined the expertise of Christopher Shallue from Google’s artificial intelligence project, Google Brain, and Andrew Vanderburg, a NASA Sagan Postdoctoral Fellow and astronomer at the University of Texas at Austin. The researchers explored using a neural network to shake ever harder to find worlds out of the Kepler data.

It is a technique that is being used across a wide range of disciplines, but what exactly does a neural network do?

Neural networks are computer algorithms inspired by the way the brain recognizes patterns. For example, as a child you learned to recognize buses. It is unlikely anyone sat you down and presented a set of rules for identifying a bus. Rather, buses were repeatedly pointed out to you on the street and your brain found its own set of similarities within these examples. The idea behind a neural network is similar. Rather than telling a computer how to identify a feature such as the dip in light from a planet, the network is fed many examples and allowed to determine the features to get a consistently correct result.

This is a very successful way of developing pattern recognition software, making neural networks one of the newest tools in town used from image recognition to stock market trends. A key strength is dealing with large quantities of data to produce a consistent result.

Kepler has observed about 200,000 stars and another 200,000 will be the target for the Transiting Exoplanet Survey Satellite (TESS) to be launched next year. And if that analysis still looks doable with a bit of elbow grease, the NASA exoplanet archive has just added 18 million light curves from the UKIRT Microlensing survey.

In addition to being slow, humans can also be inconsistent (I once tried to flag down a lorry instead of a bus before I’d had my morning tea). This is especially true when trying to tease out the faint signature of Earth-sized worlds at the limit of the telescope’s capabilities. While Kepler has an automated pipeline to identify likely planets, simulated data suggests it recovers just 26% of Earth-sized planets on orbits similar to our own. Exploring new ways to handle these huge data sets is therefore a top priority.

While neural networks all learn to identify patterns from a series of examples, there are different choices for their structure. In their discovery paper, Shallue and Vanderburg try three different network architectures. The one they find the most successful is known as a “Convolution Neural Network”, which is commonly used in image classification.

Neural networks are loosely inspired by the structure of the human brain: “Neurons” do a simple computation and then pass information to the next layer of neurons. In this way, a computer can “learn” to identify a dog in an image, or an exoplanet in a Kepler light curve.  (Google)

This utilizes the fact that neighboring data points may form related structures, examining attributes such as the maximum and minimum of small local groups of points to hunt for features. This makes sense when your input data is the light from a star being consecutively dimmed by the passage of a planet.

In this first exploration, the neural network searched for undiscovered planets in known systems. The network found a total of 30 possible new planets, four of which it assigned a probability greater than 0.9 of this being a true detection. Based on the network’s performance when tested on known planets, this level of probability corresponded to a correctly identified planet 96% of the time.

These four candidates were then examined by Shallue and Vanderburg for alternative reasons for the dip in the light curve. Such false positives can be caused by the star being part of a binary system, where the stellar siblings periodically eclipse one another to produce small drops in their combined light. One candidate fell foul of having a close stellar neighbor which may have been causing this effect, while a second candidate showed a light dip that increased over time; an effect not expected by a planet. For the remaining two possibilities, there were no obvious reservations. These were really two new planets; Kepler-90i and Kepler-80g.

While neither new exoplanet is likely to be Earth-like, both belong to intriguing planetary systems. Kepler-80g is the outermost world of a compact system of six planets, all with orbits between 1 – 10 days. The outer five planets form a “resonant chain”; a musical-sounding term that means that the duration of the orbits of neighboring planets are neat integer ratios (in this case, either 2:3 or 3:4).

This orderly line-up is seen in the orbits of the Jovian moons, Io, Europa and Ganymede, and more recently, in the TRAPPIST-1 exoplanet system that hit the headlines last February. Computer models suggest that resonant orbits are formed when planets migrate inwards from a location further out from their star. This is likely how such a close stack of planets exists so close to the star, where we do not expect a lot of planet-building dust and gas.

The second planet hit the media headlines because its addition made Kepler-90 the first known star other than our own Sun to host eight planets. Also like our Solar System, the Kepler-90 planets have the giant gaseous worlds further from the star and the smaller rocky planets closer in. However, these planets all sit within the orbit of the Earth around the Sun, suggested that they too migrated inwards from colder reaches where ice could solidify and help build-up the mass of the giant planets.

Kepler-90i is 2,545 light-years away from Earth and orbits its host star in 14.45 days. (NASA)

Notably, Kepler-90i is right at the limit of what Kepler is sensitive enough to detect. This means the system may well have more planets that are too small and distant from their star for Kepler to spot.

In addition to finding these small planets, the size of their planetary systems underscores the potential of the neural network. The evolution of a planet depends heavily on its neighbors. The Earth may have been a dry world if our gas giants had not swept in icy meteorites to deliver oceans to our surface. Mars’s build-up of ice changes substantially over time as the planet’s axis wobbles due to the looming presence of Jupiter.

Such conditions can be modeled, but only if the full planetary system is known. Uncovering the planets around known host stars helps constrain models of how planets form and evolve, and even hint at which worlds may have remained temperate enough to develop life. Picking out the smaller worlds in a starlight signature crowded by other planets is as tricky as spotting a bus in the morning rush hour before tea; it could need this computer algorithm on the job.

Last week’s announcement may show the beginning of a new regime of planet hunting; one where we shake-out the smaller worlds hidden in noisy data. This could provide us both with more small planets and many more multi-planet systems, helping us pin down the most likely places we may find another planet like our own or even one most likely to be completely alien.

 

Elizabeth Tasker is a planetary scientist at the Japanese space agency JAXA and the Earth-Life Science Institute in Tokyo.  Her newly-released book is titled “The Planet Factory.”

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Marc Kaufman
Marc Kaufman is the author of two books about space: "Mars Up Close: Inside the Curiosity Mission” and “First Contact: Scientific Breakthroughs in the Search for Life Beyond Earth.” He is also an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer. While the “Many Worlds” column is supported and informed by NASA’s Astrobiology Program, any opinions expressed are the author’s alone.

To contact Marc, send an email to marc.kaufman@manyworlds.space.

A New Way to Find Signals of Habitable Exoplanets?

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Scientists propose a new and more indirect way of determining whether an exoplanet has a good, bad or unknowable chance of being habitable.  (NASA’s Goddard Space Flight Center/Mary Pat Hrybyk)

The search for biosignatures in the atmospheres of distant exoplanets is extremely difficult and time-consuming work.  The telescopes that can potentially take the measurements required are few and more will come only slowly.  And for the current and next generation of observatories, staring at a single exoplanet long enough to get a measurement of the compounds in its atmosphere will be a time-consuming and expensive process — and thus a relatively infrequent one.

As a way to potentially improve the chances of finding habitable conditions on those exoplanets that are observed, a new approach has been proposed by a group of NASA scientists.

The novel technique takes advantage of the frequent stellar storms emanating from cool, young dwarf stars. These storms throw huge clouds of stellar material and radiation into space – traveling near the speed of light — and the high energy particles then interact with exoplanet atmospheres and produce chemical biosignatures that can be detected.

The study, titled “Atmospheric Beacons of Life from Exoplanets Around G and K Stars“, recently appeared in Nature Scientific Reports

“We’re in search of molecules formed from fundamental prerequisites to life — specifically molecular nitrogen, which is 78 percent of our atmosphere,” said Airapetian, who is a solar scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and at American University in Washington, D.C. “These are basic molecules that are biologically friendly and have strong infrared emitting power, increasing our chance of detecting them.”

The thin gauzy rim of the planet in foreground is an illustration of its atmosphere. (NASA’s Goddard Space Flight Center)

So this technique, called a search for  “Beacons of Life,” would not detect signs of life per se, but would detect secondary or tertiary signals that would, in effect, tell observers to “look here.”

The scientific logic is as follows:

When high-energy particles from a stellar storm reach an exoplanet, they break the nitrogen, oxygen and water molecules that may be in the atmosphere into their individual components.

Water molecules become hydroxyl — one atom each of oxygen and hydrogen, bound together. This sparks a cascade of chemical reactions that ultimately produce what the scientists call the atmospheric beacons of hydroxyl, more molecular oxygen, and nitric oxide.

For researchers, these chemical reactions are very useful guides. When starlight strikes the atmosphere, spring-like bonds within the beacon molecules absorb the energy and vibrate, sending that energy back into space as heat, or infrared radiation. Scientists know which gases emit radiation at particular wavelengths of light.  So by looking at all the radiation coming from the that planet’s atmosphere, it’s possible to get a sense of what chemicals are present and roughly in what amounts..

Forming a detectable amount of these beacons requires a large quantity of molecular oxygen and nitrogen.  As a result, if detected these compounds would suggest the planet has an atmosphere filled with biologically friendly chemistry as well as Earth-like atmospheric pressure.  The odds of the planet being a habitable world remain small, but those odds do grow.

“These conditions are not life, but are fundamental prerequisites for life and are comparable to our Earth’s atmosphere,” Airapetian wrote in an email.

Stellar storms and related coronal mass ejections are thought to burst into space when magnetic reconnections in various regions of the star.  For stars like our sun,  the storms become less frequent within a relatively short period, astronomically speaking.  Smaller and less luminous red dwarf stars, which are the most common in the universe, continue to send out intense stellar flares for a much longer time.

Vladimir Airapetian is a senior researcher
at NASA Goddard and a member of NASA’s  Nexus for Exoplanet System Science (NExSS) initiative.

The effect of stellar weather on planets orbiting young stars, including our own four billion years ago, has been a focus of Airapetian’s work for some time.

For instance, Airapetian and Goddard colleague William Danchi published a paper in the journal Nature last year proposing that solar flares warmed the early Earth to make it habitable.  They concluded that the high-energy particles also provided the vast amounts of energy needed to combine evenly scattered simple molecules into the kind of complex molecules that could keep the planet warm and form some of the chemical building blocks of life.

In other words, they argue, the solar flares were an essential part of the process that led to us.

What Airapetian is proposing now is to look at the chemical results of stellar flares hitting exoplanet atmospheres to see if they might be an essential part of a life-producing process as well, or of a process that creates a potentially habitable planet.

Airapetian said that he is again working with Danchi, a Goddard astrophysicist, and the team from heliophysics to propose a NASA mission that would use some of their solar and stellar flare findings.  The mission being conceived, the Exo Life Beacon Space Telescope (ELBST),  would measure infrared emissions of an exoplanet atmosphere using direct imaging observations, along with technology to block the infrared emissions of the host star.

For this latest paper, Airapetian and colleagues used a computer simulation to study the interaction between the atmosphere and high-energy space weather around a cool, active star. They found that ozone drops to a minimum and that the decline reflects the production of atmospheric beacons.

They then used a model to calculate just how much nitric oxide and hydroxyl would form and how much ozone would be destroyed in an Earth-like atmosphere around an active star. Earth scientists have used this model for decades to study how ozone — which forms naturally when sunlight strikes oxygenin t he upper atmosphere — responds to solar storms.  But the ozone reactions found a new application in this study; Earth is, after all, the best case study in the search for habitable planets and life.

Will this new approach to searching for habitable planets out?

“This is an exciting new proposed way to look for life,” said Shawn Domagal-Goldman, a Goddard astrobiologist not connected with the study. “But as with all signs of life, the exoplanet community needs to think hard about context. What are the ways non-biological processes could mimic this signature?”

 

A 2012 coronal mass ejection from the sun. Earth is placed into the image to give a sense of the size of the solar flare, but our planet is of course nowhere near the sun. (NASA, Goddard Media Studios)

Today, Earth enjoys a layer of protection from the high-energy particles of solar storms due to its strong magnetic field.  However, some particularly strong solar events can still interact with the magnetosphere and potentially wreak havoc on certain technology on Earth.

The National Oceanic and Atmospheric Administration classifies solar storms on a scale of one to five (one being the weakest; five being the most severe). For instance, a storm forecast to be a G3 event means it could have the strength to cause fluctuations in some power grids, intermittent radio blackouts in higher latitudes and possible GPS issues.

This is what can happen to a planet with a strong magnetic field and a sun that is no longer prone to sending out frequent solar flares.  Imagine what stellar storms can do when the star is younger and more prone to powerful flaring, and the planet less protected.

Exoplanet scientists often talk of the possibility that a particular planet was “sterilized” by the high-energy storms, and so could never be habitable.  But this new research suggests that some stellar storms could have just the opposite effect — making the planet more habitable.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Marc Kaufman
Marc Kaufman is the author of two books about space: "Mars Up Close: Inside the Curiosity Mission” and “First Contact: Scientific Breakthroughs in the Search for Life Beyond Earth.” He is also an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer. While the “Many Worlds” column is supported and informed by NASA’s Astrobiology Program, any opinions expressed are the author’s alone.

To contact Marc, send an email to marc.kaufman@manyworlds.space.

Can You Overwater a Planet?

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Water worlds, especially if they have no land on them, are unlikely to be home to life, or at least lifewe can detect.  Some of the basic atmospheric and mineral cycles that make a planet habitable will be absent. Cool animation of such a world. (NASA)

By guest columnist Elizabeth Tasker

 

Wherever we find water on Earth, we find life. It is a connection that extends to the most inhospitable locations, such as the acidic pools of Yellowstone, the black smokers on the ocean floor or the cracks in frozen glaciers. This intimate relationship led to the NASA maxim, “Follow the Water”, when searching for life on other planets.

Yet it turns out you can have too much of a good thing. In the November NExSS Habitable Worlds workshop in Wyoming, researchers discussed what would happen if you over-watered a planet. The conclusions were grim.

Despite oceans covering over 70% of our planet’s surface, the Earth is relatively water-poor, with water only making up approximately 0.1% of the Earth’s mass. This deficit is due to our location in the Solar System, which was too warm to incorporate frozen ices into the forming Earth. Instead, it is widely — though not exclusively — theorized that the Earth formed dry and water was later delivered by impacts from icy meteorites. It is a theory that two asteroid missions, NASA’s OSIRIS-REx and JAXA’s Hayabusa2, will test when they reach their destinations next year.

But not all planets orbit where they were formed. Around other stars, planets frequently show evidence of having migrated to their present orbit from a birth location elsewhere in the planetary system.

One example are the seven planets orbiting the star, TRAPPIST-1. Discovered in February this year, these Earth-sized worlds orbit in resonance, meaning that their orbital times are nearly exact integer ratios. Such a pattern is thought to occur in systems of planets that formed further away from the star and migrated inwards.

 

Trappist-1 and some of its seven orbiting planets.  They would have been sterilized by high levels of radiation in the early eons of that solar system — unless they were formed far out and then migrated in.  That scenario would also allow for the planets to contain substantial amounts of water. (NASA)

The TRAPPIST-1 worlds currently orbit in a temperate region where the levels of radiation from the star are similar to that received by our terrestrial worlds. Three of the planets orbit in the star’s habitable zone, where a planet like the Earth is most likely to exist.

However, if these planets were born further from the star, they may have formed with a high fraction of their mass in ices. As the planets migrated inwards to more clement orbits, this ice would have melted to produce a deep ocean. The result would be water worlds.

With more water than the Earth, such planets are unlikely to have any exposed land. This does not initially sound like a problem; life thrives in the Earth’s seas, from photosynthesizing algae to the largest mammals on the planet. The problem occurs with the planet itself.

The clement environment on the Earth’s surface is dependent on our atmosphere. If this envelope of gas was stripped away, the Earth’s average global temperature would be about -18°C (-0.4°F): too cold for liquid water. Instead, this envelope of gases results in a global average of 15°C (59°F).

Exactly how much heat is trapped by our atmosphere depends on the quantity of greenhouse gases such as carbon dioxide. On geological timescales, the carbon dioxide levels can be adjusted by a geological process known as the “carbon-silicate cycle”.

In this cycle, carbon dioxide in the air dissolves in rainwater where it splashes down on the Earth’s silicate rocks. The resulting reaction is termed “weathering”. Weathering forms carbonates and releases minerals from the rocks that wash into the oceans. Eventually, the carbon is released back into the air as carbon dioxide through volcanoes.

Continents are not only key for habitability because they sources of minerals and needed elements but also because they allow for plate tectonics — the movements and subsequent crackings of the planet’s crust that allow gases to escape.  Those gases are needed to produce an atmosphere.  (National Oceanic and Atmospheric Administration)

The rate of weathering is sensitive to temperature, slowing when he planet is cool and increasing when the temperature rises. This allows the Earth to maintain an agreeable climate for life during small variations in our orbit due to the tug of our neighboring planets or when the sun was young and cooler. The minerals released by weathering are used by all life on Earth, in particular phosphorous which forms part of our DNA.

However, this process requires land. And that is a commodity a water world lacks. Speaking at the Habitable Worlds workshop, Theresa Fisher, a graduate student at Arizona State University, warned against the effects of submerging your continents.

Fisher considered the consequences of adding roughly five oceans of water to an Earth-sized planet, covering all land in a global sea. Feasible, because weathering could still occur with rock on the ocean floor, though at a much reduced efficiency. The planet might then be able to regulate carbon dioxide levels, but the large reduction in freed minerals with underwater weathering would be devastating for life.

Despite being a key element for all life on Earth, phosphorus is not abundant on our planet. The low levels are why phosphorous is the main ingredient in fertilizer. Reduce the efficiency with which phosphorous is freed from rocks and life will plummet.

Such a situation is a big problem for finding a habitable world, warns Steven Desch, a professor at Arizona State University. Unless life is capable of strongly influencing the composition of the atmosphere, its presence will remain impossible to detect from Earth.

“You need to have land not to have life, but to be able to detect life,” Desch concludes.

However, considerations of detectability become irrelevant if even more water is added to the planet. Should an Earth-sized planet have fifty oceans of water (roughly 1% of the planet’s mass), the added weight will cause high pressure ices to form on the ocean floor. A layer of thick ice would seal the planet rock away from the ocean and atmosphere, shutting down the carbon-silicate cycle. The planet would be unable to regulate its surface temperature and trapped minerals would be inaccessible for life.

Add still more water and Cayman Unterborn, a postdoctoral fellow at Arizona State, warns that the pressure will seal the planet’s lid. The Earth’s surface is divided into plates that are in continual motion. The plates melt as they slide under one another and fresh crust is formed where the plates pull apart. When the ocean weight reaches 2% of the planet’s mass, melting is suppressed and the planet’s crust grinds to a halt.

A stagnant lid would prevent any gases trapped in the rocks during the planet’s formation from escaping. Such “degassing” is the main source of atmosphere for a rocky planet. Without such a process, the Earth-sized deep water world could only cling to an envelop of water vapor and any gas that may have escaped before the crust sealed shut.

Unterborn’s calculations suggest that this fate awaits the TRAPPIST-1 planets, with the outer worlds plausibly having hundreds of oceans worth of water pressing down on the planet.

So can we prove if TRAPPIST-1 and similarly migrated worlds are drowning in a watery grave? Aki Roberge, an astrophysicist at NASA Goddard Space Flight Center, notes that exoplanets are currently seen only as “dark shadows” briefly reducing their star’s light.

However, the next generation of telescopes such as NASA’s James Webb Space Telescope, will aim to change this with observations of planetary atmospheres. Intertwined with the planet’s geological and biological processes, this cloak of gases may reveal if the world is living or dead.

 

Elizabeth Tasker is a planetary scientist and communicator at the Japanese space agency JAXA and the Earth-Life Science Institute (ELSI) in Tokyo.  She is also author of a new book about planet formation titled “The Planet Factory.”

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Marc Kaufman
Marc Kaufman is the author of two books about space: "Mars Up Close: Inside the Curiosity Mission” and “First Contact: Scientific Breakthroughs in the Search for Life Beyond Earth.” He is also an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer. While the “Many Worlds” column is supported and informed by NASA’s Astrobiology Program, any opinions expressed are the author’s alone.

To contact Marc, send an email to marc.kaufman@manyworlds.space.

Red Dwarf Stars and the Planets Around Them

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Artist rendering of a red dwarf or M star, with three exoplanets orbiting. About 75 percent of all stars in the sky are the cooler, smaller red dwarfs. (NASA)

It’s tempting to look for habitable planets around red dwarf stars, which put out far less luminosity and so are less blinding.  But is it wise?

That question has been near the top of the list for many exoplanet scientists, especially those involved in the search for habitable worlds.

Red dwarfs are plentiful (about three-quarters of all the stars out there) and the planets orbiting them are easier to observe because the stars are so small compared to our Sun and so an Earth-sized planet blocks a greater fraction of starlight.  Because planets orbiting red dwarfs are much closer in to their host stars, the observing geometry favors detecting more transits.

A potentially rich target, but with some drawbacks that have become better understood in recent years.  Not only are most planets orbiting these red dwarf stars tidally locked, with one side always facing the sun and the other in darkness, but the life history of red dwarfs is problematic.  They start out with powerful flares that many scientists say would sterilize the close-in planets forever.

Also, they are theorized to be prone to losing whatever water remains even if the stellar flares don’t do it. Originally, it was thought that this would happen because of a “runaway greenhouse,” where a warming planet under a brightening star would evaporate enough water from its oceans to create a thick blanket of H2O vapor at high altitudes and block the escape of radiation, leading to further warming and the eventual loss of all the planet’s water.

The parching CO2 greenhouse of a planet like Venus may be the result of that.  Later it was realized that on many planets, another mechanism called the “moist greenhouse” might create a similar thick blanket of water vapor at high altitudes long before a planet ever got to the runaway greenhouse stage.

Finally now has come some better news about red dwarf exoplanets.  Using 3-D models that characterize atmospheres going back, forward and to the sides, researchers found atmospheric conditions quite different from those predicted by 1-D models that capture changes only going from the surface straight up.

One paper found that using some pretty simple observations and calculations, scientists could determine the bottom line likelihood of whether or not the planet would be undone by a moist greenhouse effect.  The other found that these red dwarf exoplanets could have atmospheres that are always heavily clouded, but could still have surface temperatures that are moderate.

The new studies also enlarge the size of the habitable zones in which exoplanets could be orbiting a red dwarf or other “cool” star, making more of them potentially habitable.

The green sections are the habitable zones surround the different star types.  The term refers to the region around a star where water on a planet could remain liquid at least part of the time.  The term does not mean the planets in the zone are necessarily habitable, but that they make it past one particular large hurdle.  (NASA)

 

“This is good news for those of us hoping to find habitable planets,” said Anthony Del Genio, a senior research scientist at NASA’s Goddard Institute for Space Studies (GISS) in New York, and co-author of a new paper in The Astrophysical Journal.

“These studies show that a broader range of planets could have stable climates than we thought.  This is a broadening of the width of the habitable zone by showing that we can get closer to a star and still have a potentially habitable planet.”

Yuka Fujii, author of the Astrophysical Journal article, specializes in exoplanet characterization, planetary atmospheres, planet formation, and origin of life issues. (Nerissa Escanlar)

In a NASA release, the paper’s lead author, Yuka Fujii, said this: “Using a model that more realistically simulates atmospheric conditions, we discovered a new process that controls the habitability of exoplanets and will guide us in identifying candidates for further study.” Fujii was formerly at NASA GISS and now is a project associate professor  at the Earth-Life Science Institute in Tokyo.

Since telescope time available for exoplanets will be quite limited on observatories such as the James Webb Space Telescope — which has many astronomical tasks to accomplish — the Earth-sized exoplanets around red dwarfs seem to be the more technologically feasible target to observe.

Scientists have to observe Earth-size planets for a long time and for many transits in front of the star to get a good enough signal to interpret. So given that, it will be impossible to observe all, or even many, of the candidate Earth-size planets discovered so far or will be discovered.  Tough choices have to be made.

What the group found using their 3-D models is that unlike the predictions from 1-D models, this moist greenhouse effect does not set in immediately for a particular luminosity of the star. Rather, it occurs more gradually as the star becomes brighter.

That fact, Del Genio said, makes the findings from the new 3-D modeling studies additionally important because they can help observers determine which small, rocky exoplanets might be most promising in terms of habitability.

They do this by identifying — and then eliminating — exoplanets that have undergone what is called a “moist greenhouse” transformation.

Anthony Del Genio, leader of the GISS team using cutting edge Earth climate models to better understand conditions on exoplanets.

A moist greenhouse occurs when a watery exoplanet orbits too close to its host star. Light from the star will then heat the oceans until they begin to evaporate and are lost to space.

This happens when water vapor rises to a layer in the upper atmosphere called the stratosphere and gets broken into its elemental components (hydrogen and oxygen) by ultraviolet light from the star.
The extremely light hydrogen atoms can then escape to space. Planets in the process of losing their oceans this way are said to have entered a “moist greenhouse” state because of their humid stratospheres.

What the group found using their 3-D models is that unlike the runaway greenhouse effect this moist greenhouse effect does not set it immediately at a particular temperature threshold.  Rather, it occurs more gradually, even over eons.

They came to this conclusion because the upper atmosphere heating turned out to be a function of the infrared radiation coming from the stars rather than from turbulent convective activity (as in massive thunderstorms) from the surface, as earlier believed.

The infrared radiation (which is at wavelengths slightly longer than the visible wavelength area of the spectrum) will warm the planet and cause what water is present to eventually. evaporate.

 

This is a plot of what the sea ice distribution could look like on a tidally locked ocean world. The star would be off to the right, blue is where there is open ocean, and white is where there is sea ice.  (NASA/GISS/Anthony Del Genio)

This paper comes on the heels of a related one in the August edition of  The Astrophysical Journal.

Ravi Kopparapu, a research scientist at NASA Goddard and Eric Wolf of the University of Colorado, Boulder came to a similar conclusion about surfaces on exoplanets orbiting red dwarfs. As they wrote in their abstract, the modeling  “implies that some planets around low mass (red dwarf) stars can simultaneously undergo water-loss and remain habitable.”

They also reported general circulation model 3-D modeling that showed moist greenhouse scenarios around red dwarfs were slow moving and took place at relatively low temperatures. As a result, oceans could remain for a long time — even billions of years — as they slowly evaporated.

Both groups use general circulation models (GCM), though different ones.  GCMs are an advanced type of climate model that looks at the general circulation patterns of planetary atmospheres and oceans.  They were initially designed to model Earth’s climate patterns, but now are used for exoplanets as well.

The original theory of the moist greenhouse scenario was put forward in the 1980s by James Kasting of Pennsylvania State University, who also did much original work on the concept of a habitable zone and helped popularize the concept.  Both the runaway greenhouse and the moist greenhouse have become important factors in exoplanet study.

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Marc Kaufman
Marc Kaufman is the author of two books about space: "Mars Up Close: Inside the Curiosity Mission” and “First Contact: Scientific Breakthroughs in the Search for Life Beyond Earth.” He is also an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer. While the “Many Worlds” column is supported and informed by NASA’s Astrobiology Program, any opinions expressed are the author’s alone.

To contact Marc, send an email to marc.kaufman@manyworlds.space.

2.5 Billion Years of Earth History in 100 Square Feet

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Scalding hot water from an underground thermal spring creates an iron-rich environment similar to what existed on Earth 2.5 billion years ago. (Nerissa Escanlar)

Along the edge of an inlet on a tiny Japanese island can be found– side by side – striking examples of conditions on Earth some 2.4 billion years ago, then 1.4 billion years ago and then the Philippine Sea of today.

First is a small channel with iron red, steaming and largely oxygen-free water – filled from below with bubbling liquid above 160 degrees F. This was Earth as it would have existed, in a general way, as oxygen was becoming more prevalent on our planet some 2.4 billion years ago. Microbes exist, but life is spare at best.

Right next to this ancient scene is region of green-red water filled with cyanobacteria – the single-cell creatures that helped bring masses of oxygen into our atmosphere and oceans.  Locals come to this natural “onsen” for traditional hot baths, but they have to make their way carefully because the rocky floor is slippery with green mats of the bacteria.

And then there is the Philippine Sea, cool but with spurts of warm water shooting up from below into the cove.

All of this within a area of maybe 100 square feet.

It is a unique hydrothermal scene, and one recently studied by two researchers from the Earth-Life Science Institute in Tokyo – evolutionary microbiologist Shawn McGlynn and ancient virus specialist Tomohiro Mochizuki.

They were taking measurements of temperature, salinity and more, as well as samples of the hot gas and of microbial life in the iron-red water. Cyanobacterial mats are collected in the greener water, along with other visible microbe worlds.

Shawn McGlynn, associate professor at the Earth Life Science Institute in Tokyo scoops some iron-rich water from a channel on Shikine-jima Island, 100 miles from Tokyo. (Nerissa Escanlar)

The scientific goals are to answer specific questions – are the bubbles the results of biology or of geochemical processes? What are the isotopic signatures of the gases? What microbes and viruses live in the super-hot sections? And can cyanobacteria and iron co-exist?

All are connected, though, within the broad scientific effort underway to ever more specifically understand conditions on Earth through the eons, and how those conditions can help answer fundamental questions of how life might have begun.

“We really don’t know what microbiology looked like 2.5 billion or 1.5 billion years ago,” said McGlynn, “But this is a place we can go where we can try to find out. It’s a remarkable site for going back in time.”

In particular, there are not many natural environments with high levels of dissolved iron like this site. Yet scientists know from the rock record that there were periods of Earth history when the oceans were similarly filled with iron.

Mochizuki elaborated: “We’re trying to figure out what was possible chemically and biologically under certain conditions long ago.

“If you have something happening now at this unusual place – with the oxygen and iron mixing in the hot water to turn the water red – then there’s a chance that what we find today was there as well billions of years ago. ”

Tomohiro Mochizuki at collecting samples directly from the spot where 160 degree F water pushes up through the rock at Jinata hot spring. (Nerissa Escanlar)

The Jinata hot springs, as the area is known, is on Shikine-jima Island, one of the furthest out in the Izu chain of islands that starts in Tokyo Bay. More than 100 miles from Tokyo itself, Shikine-jima is nonetheless part of Tokyo Prefecture.

The Izu islands are all volcanic, created by the underwater movements of the Philippine and Pacific tectonic plates. That boundary remains in flux, and thus the hot springs and volcanoes. The terrain can be pretty rugged: in English, Jinata translates to something like Earth Hatchet, since the hot spring is at the end of a path through what does look like a rock rising that had been cut through with a hatchet.

Hot springs and underwater thermal vents have loomed large in thinking about origins of life since it became known in recent decades that both generally support abundant life – microbial and larger – and supply nutrients and even energy in the form of electricity from vents and electron transfers from chemical reactions.

And so not surprisingly, vents are visited and sampled not infrequently by ELSI scientists. McGlynn was on another hydrothermal vent field trip in Iceland over the summer with, among others, ELSI Origins Network fellow Donato Gionovelli and ELSI principal investigator and electrochemist Ruyhei Nakamura..

McGlynn’s work is focused on how electrons flow between elements and compounds, a transfer that he sees as a basic architecture for all life. With so many compelling flows occurring in such a small space, Jinata is a superb laboratory.

The volcanic Izu island chain, starting in Tokyo Bay and going out into the Philippine Sea.

For Mochizuki, the site turned out to be exciting but definitely not a goldmine. That’s because his speciality is viruses that live at very high temperatures, and even the bubbling hot spring in the iron trench measured about 73 degrees C (163 degrees F.) The viruses he incubates live at temperatures between closer to 90 C (194 F), not far from the boiling point.

His goal in studying these high-temperature (hyperthermophilic) viruses is to look back to the earliest days of life forming on Earth, using viruses as his navigators. Since life is thought by many scientists to have begun in a super hot RNA world, Mochizuki wants to look at viruses still living in those conditions today to see what they can tell us.

So far, he explained, what they have told us is that the RNA in the earliest lifeforms on Earth – denizens of the Archaean kingdom – did not have viruses. And this is puzzling.

So Mochizuki is always interested in going to sample hot springs and thermal vents to collect high temperature viruses, and to look for surprises.

Though the bubbling waters were so hot that both researchers had difficulty standing in the water with boots on and holding their collection vials with gloves, it was not hot enough for what Mochizuki is after. But that certainly didn’t stop him from taking as many samples as he could, including some for other ELSI researchers doing different work but still needing interesting samples.

Researchers often need to be inventive on field trips, and that was certainly the case at Jinata. When McGlynn first tried to sample the bubbles at the scalding spring, his hands and feet quickly felt on fire and he had to retreat.

To speed the process, he and Mochizuki built a funnel out of a large plastic water bottle, a device that allowed the bubbles to be collected and directed into the sample vial without the gloved hands being so close to the heat.   The booted feet, however, remained a problem and the heat just had to be endured.

Nearby the steaming bubbling of the hot spring were collections of what appeared to be fine etchings on the bottom of the red channel. These faint designs, McGlynn explained, were the product of a microbe that makes it’s way along the bottom and deposits lines of processed iron oxide as it goes. So while the elegant designs are not organic, the creatures that creates them surely is.

“Touch the area and the lines go poof,” McGlynn said. “That’s because they’re just the iron oxide; nothing more. Next to us is the water with much less iron and a lot more oxygen, and so there are blooms of (green) cyanobacteria. Touch them and they don’t go poof, they stick to your hand because they’re alive.”

Filaments created by microbes as they deposit iron oxide at the bottom of small channel. (Marc Kaufman)

McGlynn also collects some of the the poofs to get at the microbes making the unusual etchings. It may be a microbe never identified before.

As a microbiologist, he is of course interested in identifying and classifying microbes. He initially thought the microbes in the iron channel would be anaerobic, but he found that even tiny amount of oxygen making their way into the springs from the atmosphere made most aerobic, or possibly anaerobes capable of surviving with oxygen (which usually is toxic to them.)

He also found that laboratory studies that found cyanobacteria would not flourish in the presence of iron were not accurate in nature, or certainly were not accurate at Jinata onsen.

But it is that flow of electrons that really drives McGlynn – he even dreams of them at night, he told me.

One of the goals of his work, and that of his colleague and sometimes collaborator at ELSI, geobiochemist Yuichiro Ueno, is to answer some of the outstanding questions about that flow of electrons (electricity) from the core of the Earth. The energy transits through the mantle, to the surface and then often is in contact with the biosphere (all living things) before it enters the atmosphere and sometimes disappears into space.

He likened the process to the workings of a gigantic battery, with the iron core as the cathode and the oxygen in the atmosphere as the anode. Understanding the chemical pathways traveled by the electrons today, he is convinced, will tell a great deal about conditions on the early Earth as well.

It’s all important research in what is a chipping away of the many unknowns in the stories of the origins of Earth and the origin of life.

A boundary between where the very hot iron-rich water meets and the less hot water with thriving cyanobacteria colonies at Jinata.

The field work also illustrated the hit-and-miss nature of these kind of outings. While McGlynn has not come up with Jinata surprises or novel understandings, he was so taken with the setting that he wondered if a seemly empty building not too far from the site could be turned into an ELSI marine lab.

And while Mochizuki did not find sufficiently hot water for his work, he might still be coming back to the island, or others nearby. That’s because he learned of a potentially much hotter spring at a spot where the sea hits one of the island’s steep cliffs – a site that requires boat access that was unsafe in the choppy waters during this particular visit.

In addition, McGlynn and Mochizuki did make some surprising discoveries, though they didn’t involve microbes, electron transfer or viruses.

During a morning visit to a different hot spring, they came across a team of what turned out to be officials of the Izu islands – all dressed in suits and ties. They were visiting Shikine-jima as part of a series of joint islands visit to assess economic development opportunities.

The officials were intrigued to learn what the scientists were up to, and made some suggestions of other spots to sample. One was an island occupied by Japanese self-defense forces and generally closed to outsiders. But the island is known to have areas of extremely hot water just below the surface of the land, sometimes up to 100 C (212 F.)

The officials gave their cards and told the scientists to contact them if they wanted to get onto that island for sampling. And as for the official from Shikine-jima, he was already thinking big.

“It would be a very good thing,” he said, “if you found the origin of life on our island.

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Marc Kaufman
Marc Kaufman is the author of two books about space: "Mars Up Close: Inside the Curiosity Mission” and “First Contact: Scientific Breakthroughs in the Search for Life Beyond Earth.” He is also an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer. While the “Many Worlds” column is supported and informed by NASA’s Astrobiology Program, any opinions expressed are the author’s alone.

To contact Marc, send an email to marc.kaufman@manyworlds.space.