A National Strategy for Finding and Understanding Exoplanets (and Possibly Extraterrestrial Life)

Facebooktwittergoogle_plusredditpinterestlinkedinmail
The National Academies of Science, Engineering and Medicine took an in-depth look at what NASA, the astronomy community and the nation need to grow the burgeoning science of exoplanets — planets outside our solar system that orbit a star. (NAS)

 

An extensive, congressionally-directed study of what NASA needs to effectively learn how exoplanets form and whether some may support life was released today, and it calls for major investments in next-generation space and ground telescopes.  It also calls for the adoption of an increasingly multidisciplinary approach for addressing the innumerable questions that remain unanswered.

While the recommendations were many, the top line calls were for a sophisticated new space-based telescope for the 2030s that could directly image exoplanets, for approval and funding of the long-delayed and debated WFIRST space telescope, and for the National Science Foundation and to help fund two of the very large ground-based telescopes now under development.

The study of exoplanets has seen remarkable discoveries in the past two decades.  But the in-depth study from the private, non-profit National Academies of Sciences, Engineering and Medicine concludes that there is much more that we don’t understand than that we do, that our understandings are “substantially incomplete.”

So the two overarching goals for future exoplanet science are described as these:

 

  • To understand the formation and evolution of planetary systems as products of star formation and characterize the diversity of their architectures, composition, and environments.
  • To learn enough about exoplanets to identify potentially habitable environments and search for scientific evidence of life on worlds orbiting other stars.

 

Given the challenge, significance and complexity of these science goals, it’s no wonder that young researchers are flocking to the many fields included in exoplanet science.  And reflecting that, it is perhaps no surprise that the NAS survey of key scientific questions, goals, techniques, instruments and opportunities runs over 200 pages. (A webcast of a 1:00 pm NAS talk on the report can be accessed here.)

 


Artist’s concept showing a young sun-like star surrounded by a planet-forming disk of gas and dust.
(NASA/JPL-Caltech/T. Pyle)

These ambitious goals and recommendations will now be forwarded to the arm of the National Academies putting together 2020 Astronomy and Astrophysics Decadal Survey — a community-informed blueprint of priorities that NASA usually follows.

This priority-setting is probably most crucial for the two exoplanet direct imaging missions now being studied as possible Great Observatories for the 2030s — the paradigm-changing space telescopes NASA has launched almost every decade since the 1970s.

HabEx (the Habitable Exoplanet Observatory) and LUVOIR (the Large UV/Optical/IR Surveyor) are two direct-imaging exoplanet projects in conception phase that would indeed significantly change the exoplanet field.

Both would greatly enhance scientists’ ability to detect and characterize exoplanets. But the more ambitious LUVOIR in particular, would not only find many exoplanets in all stages of formation, but could readily read chemical components of the atmospheres and thereby get clear data on whether the planet was habitable or even if it supported life.  The LUVOIR would provide either an 8 meter or a record-breaking 15-meter space telescope, while HabEx would send up a 4 meter mirror.

HabEx and LUVOIR are competing with two other astrophysics projects for that Great Observatory designation, and so NAS support now and prioritizing later is essential if they are to become a reality.

 

An artist notional rendering of an approximately 15-meter telescope in space. This image was created for an earlier large space telescope feasibility project called ATLAST, but it is similar to what is being discussed inside and outside of NASA as a possible great observatory after the James Webb Space Telescope and the Wide-Field Infrared Survey Telescope. (NASA)

These two potential Great Observatories will be costly and would take many years to design and build.  As the study acknowledges and explains, “While the committee recognized that developing a direct imaging capability will require large financial investments and a long time scale to see results, the effort will foster the development of the scientific community and technological capacity to understand myriad worlds.”

So a lot is at stake.  But with budget and space priorities in flux, the fate of even the projects given the highest priority in the Decadal Survey remains unclear.

That’s apparent in the fact that one of the top recommendations of today’s study is the funding of the number one priority put forward in the 2010 Astronomy and Astrophysics Decadal Survey — the Wide Field Infrared Survey Telescope (WFIRST.)

The project — which would boost the search for exoplanets further from their stars than earlier survey mission using microlensing– was cancelled in the administration’s proposed 2019 federal budget.  Congress has continued funding some development of this once top priority, but its future nonetheless remains in doubt.

WFIRST could have the capability of directly imaging exoplanets if it were built with technology to block out the blinding light of the star around which exoplanets would be orbiting — doing so either with internal coronagraph or a companion starshade.  This would be novel technology for a space-based telescope, and the NAS survey recommends it as well.

 

An artist’s rendering of a possible “starshade” that could be launched to work with WFIRST or another space telescope and allow the telescope to take direct pictures of other Earth-like planets. (NASA/JPL-Caltech)

The list of projects the study recommends is long, with these important additions:

That “ground-based astronomy – enabled by two U.S.-led telescopes – will also play a pivotal role in studying planet formation and potentially terrestrial worlds, the report says. The future Giant Magellan telescope (GMT) and proposed Thirty Meter Telescope (TMT) would allow profound advances in imaging and spectroscopy – absorption and emission of light – of entire planetary systems. They also could detect molecular oxygen in temperate terrestrial planets in transit around close and small stars, the report says.”

The committee concluded that the technology road map to enable the full potential of GMT and TMT in the study of exoplanets is in need of investments, and should leverage the existing network of U.S. centers and laboratories. To that end, the report recommends that the National Science Foundation invest in both telescopes and their exoplanet instrumentation to provide all-sky access to the U.S. community.

And for another variety of ground-based observing the study called for the funding of a project to substantially increase the precision of instruments that find and measure exoplanets using the detected “wobble” of the host star.  But stars are active with or without a nearby exoplanet, and so it has been difficult to achieve the precision that astronomers using this “radial velocity” technique need to find and characterize smaller exoplanets.

Several smaller efforts to increase this precision are under way in the U.S., and the European Southern Observatory has a much larger project in development.

Additionally, the report recommends that the administrators of the James Webb Space Telescope give significant amounts of observing time to exoplanet study, especially early in its time aloft (now scheduled to begin in 2021.)  The atmospheric data that JWST can potentially collect could and would be used in conjunction with results coming from other telescopes, and to further study of exoplanet targets that are already promising based on existing theories and findings.

 

Construction has begun on the Giant Magellan Telescope at the Carnegie Institution’s Las Campanas Observatory in Chile. This artist rendering shows what the 24.5 meter (80 foot) segmented mirror and observatory will look like when completed, estimated to be in 2024. (Mason Media Inc.)

 

While the NAS report gives a lot of attention to instruments and ways to use them, it also focuses as never before on astrobiology — the search for life beyond Earth.

Much work has been done on how to determine whether life exists on a distant planet through modeling and theorizing about biosignatures.  The report encourages scientists to expand that work and embraces it as a central aspect of exoplanet science.

The study also argues that interdisciplinary science — bringing together researchers from many disciplines — is the necessary way forward.  It highlights the role of the Nexus for Exoplanet System Science, a NASA initiative which since 2015 has brought together a broad though limited number  of science teams from institutions across the country to learn about each other’s work and collaborate whenever possible.

The initiative itself has not required much funding, instead bringing in teams that had been supported with other grants.   However, that may be changing. One of the study co-chairs, David Charbonneau of Harvard University, said after the release of the study that the “promise of NExSS is tremendous…We really want that idea to grow and have a huge impact.”

The NAS study itself recommends that “building on the NExSS model, NASA should support a cross-divisional exoplanet research coordination network that includes additional membership opportunities via dedicated proposal calls for interdisciplinary research.”

The initiative, I’m proud to say, sponsors this interdisciplinary column in addition to all that interdisciplinary science.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Architecture of Solar Systems

Facebooktwittergoogle_plusredditpinterestlinkedinmail
The architecture of planetary systems is an increasingly important factor to exoplanet scientists.  This illustration shows the Kepler-11 system where the planets are all roughly the same size and their orbits spaced at roughly the same distances from each other.  The the planets are, in the view of scientists involved with the study, “peas in a pod.” (NASA)

Before the discovery of the first exoplanet that orbits a star like ours, 51 Pegasi b, the assumption of solar system scientists was that others planetary systems that might exist were likely to be like ours.  Small rocky planets in the inner solar system, big gas giants like Jupiter, Saturn and Neptune beyond and, back then, Pluto bringing up the rear

But 51 Peg b broke every solar system rule imaginable.  It was a giant and hot Jupiter-size planet, and it was so close to its star that it orbited in a little over four days.  Our Jupiter takes twelve years to complete an orbit.

This was the “everything we knew about solar systems is wrong” period, and twenty years later thinking about the nature and logic of solar system architecture remains very much in flux.

But progress is being made, even if the results are sometimes quite confounding. The umbrella idea is no longer that solar, or planetary, systems are pretty much like ours, but rather that the galaxy is filled with a wild diversity of both planets and planetary systems.

Detecting and trying to understand planetary systems is today an important focus 0f  exoplanet study, especially now that the Kepler Space Telescope mission has made clear that multi-planet systems are common.

As of early July, 632 multi planet systems have been detected and 2,841 stars are known to have at least one exoplanets.  Many of those stars with a singular planet may well have others yet to be found.

An intriguing newcomer to the diversity story came recently from University of Montreal astronomer Lauren Weiss, who with colleagues expanded on and studied some collected Kepler data.

What she found has been deemed the “peas in a pod” addition to the solar system menagerie.

Weiss was working with the California-Kepler Survey, which included a team of scientists pouring over, elaborating on and looking for patterns in, among other things, solar system architectures.

Weiss is part of the California-Kepler Survey team, which used the Keck Observatory to obtain high-resolution spectra of 1305 stars hosting 2025 transiting planets originally discovered by Kepler.

From these spectra, they measured precise sizes of the stars and their planets, looking for patterns in, among other things, solar system architectures.  They focused on 909 planets belonging to 355 multi-planet systems. By improving the measurements of the radii of the stars, Weiss said, they were able to recalculate the radii of all the planets.

So Weiss studied hundreds systems and did find a number of surprising, unexpected patterns.

In many systems, the planets were all roughly the same size as the planet in orbit next to them. (No tiny-Mars-to-gigantic-Jupiter transitions.)  This kind of planetary architecture was not found everywhere but it was quite common — more common than random planet sizing would predict.

“The effect showed up with smaller planets and larger ones,” Weiss told me during last week’s University of Cambridge Exoplanets2 conference. “The planets in each system seemed to know about the sizes of the neighbors,” and for thus far unknown reasons maintained those similar sizes.

What’s more, Weiss and her colleagues found that the orbits of these “planets in a pod” were generally an equal distance apart in “multi” of three planets or more. In other words, the distance between the orbits of planet A and planet B was often the same distance as between the orbits of planet B and planet C.

Lauren Weiss at the W.M Keck Observatory.

So not only were many of the planets almost the same size, but they were in orbits spaced at distances from each other that were once again much more similar than a random distribution would predict. In the Astronomical Journal article where she and her colleagues described the phenomena, they also found a “wall” defining how close together the planets orbited.

The architecture of these systems, Weiss said, reflected the shapes and sizes of the protoplanetary in which they were formed.  And it would appear that the planets had not been disrupted by larger planets that can dramatically change the structure of a solar system — as happened with Jupiter in our own.

But while those factors explain some of what was found, Weiss said other astrophysical dynamics needed to be at play as well to produce this common architecture.  The stability of the system, for instance, would be compromised if the orbits were closer than that “wall,” as the gravitational pull of the planets would send them into orbits that would ultimately result in collisions.

The improved spectra of the Kepler planets were obtained from 2011 to 2015, and the targets are mostly located between 1,000 and 4,000 light-years away from Earth.

The architectures of California-Kepler study multi-planet systems with four planets or more.  Each row corresponds to the planets around one and the circles represent the radii of planets in the system.  Note how many have lines of planets that are roughly the same size. (Lauren Weiss, The Astronomical Journal.)

Planetary system architecture was a significant topic at the Cambridge Exoplanets2 conference.  While the detection of individual exoplanets remains important in the field, it is often treated as a precursor to the ultimate detection of systems with more planets. 

The TRAPPIST-1 system, discovered in 2015 by a Belgian team, is probably the most studied and significant of those discovered so far.

The ultra-cool dwarf star hosts seven Earth-sized, temperate exoplanets in or near the “habitable zone.” As described by one of those responsible for the discovery, Brice-Olivier Demory of the Center for Space and Habitability University of Bern, the system “represents a unique setting to study the formation and evolution of terrestrial planets that formed in the same protoplanetary disk.”

The Trappist-1 architecture features not only the seven rocky planets, but also a resonance system whereby the planets orbits at paces directly related to the planets nearby them.  In other words, one planet may make two orbits in exactly the time that it takes for the next planet to make three orbits.

All the Trappist-1 planets are in resonance to another system planet, though they are not all in resonance to each other.

The animation above from the NASA Ames Research Center shows the orbits of the Trappist-1 system.  The planets pass so close to one another that gravitational interactions are significant, and to remain stable the orbital periods are nearly resonant. In the time the innermost planet completes eight orbits, the second, third, and fourth planets complete five, three, and two respectively.

The system is very flat and compact. All seven of TRAPPIST-1’s planets orbit much closer to their star than Mercury orbits the sun. Except for TRAPPIST-1b, they orbit farther than the Galilean moons — three of which are also in resonance around Jupiter.

The distance between the orbits of TRAPPIST-1b and TRAPPIST-1c is only 1.6 times the distance between the Earth and the Moon.  A year on the closest planet passes in only 1.5 Earth days, while the seventh planet’s year passes in only 18.8 days.

Given the packed nature of the system, the planets have to be in particular orbits that keep them from colliding.  But they also have to be in orbits that ensure that all or most of the planets aren’t on the same side of the star, creating a severe imbalance that would result in chaos.

“The Trappist-1 system has entered into a zone of stability,” Demory told me, also at the Exoplanets2 conference.  “We think of it as a Darwinian effect — the system survives because of that stability created through the resonance.  Without the stability, it would die. ”

He said the Trappist-1 planets were most likely formed away from their star and migrated inward.  The system had rather a long time to form, between seven and eight billion years.

The nature of some of the systems now being discovered brings to mind that early reaction to the detection of 51 Pegasi b, the world’s first known exoplanet.

The prevailing consensus that extra-solar systems would likely be similar to ours was turned on its head by the giant planet’s closeness to its host star.  For a time many astronomers thought that hot Jupiter planets would be found to be common.

But 20 years later they know that hot Jupiters — and the planetary architecture they create — are rather unusual, like the architecture of our own solar system.

With each new discovery of a planetary system, the understanding grows that while solar systems are governed by astrophysical forces, they nonetheless come in all sizes and shapes. Diversity is what binds them together.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Exoplanet Science Flying High

Facebooktwittergoogle_plusredditpinterestlinkedinmail
An artist’s concept shows what the TRAPPIST-1 planetary system may look like, based on available data about the planets’ diameters, masses and distances from the host star, as of February 2018. Credit: NASA/JPL-Caltech

 

Early this spring, the organizers of an exoplanet science gathering at Cambridge University put out the word that they would host a major meeting this summer.  Within a week, the 300 allotted slots had been filled by scientists aspiring and veteran, and within a short time the waiting list was up to 150 more.

Not the kind of reaction you might expect for a hardcore, topic-specific meeting, but exoplanet science is now in a phase of enormous growth and excitement.  With so many discoveries already made and waiting to be made, so many new (and long-standing) questions to be worked on, so much data coming in to be analyzed and turned into findings,  the field has something of a golden shine.

What’s more, it has more than a little of the feel of the Wild West.

Planet hunters Didier Queloz and Michel Mayor at the European Southern Observatory’s La Silla site. (L. Weinstein/Ciel et Espace Photos)

Didier Queloz, a professor now at Cambridge but in the mid 1990s half of the team that identified the first exoplanet, is the organizer of the conference.

“It sometimes seems like there’s not much exploration to be done on Earth, and the opposite is the case with exoplanets,” he told me outside the Cambridge gathering.

“I think a lot of young scientists are attracted to the excitement of exoplanets, to a field where there’s so much that isn’t known or understood.”

Michel Mayor of the Observatory of Geneva — and the senior half of the team that detected the first exoplanet orbiting a star like our sun, 51 Pegasi b– had opened the gathering with a history of the search for extra-solar planets.

That search had some conceptual success prior to the actual 1995 announcement of an exoplanet discovery, but several claims of having actually found an exoplanet had been made and shown to be wanting.  Except for the relative handful of scientists personally involved, the field was something of a sideshow.

“At the time we made our first discovery, I basically knew everyone in the field.  We were on our own.”

Now there are thousands of people, many of them young people, studying exoplanets.  And the young people, they have to be smarter, more clever, because the questions are harder.”

And enormous progress is being made.

The pace of discovery is charted here by Princeton University physicist and astronomer Joshua Winn. First is a graphic of all the 3,735 exoplanet discoveries made since 1995, and then the 1943 planets found just from 2016 to today.

The total number and distribution of known exoplanets, identified by the mass of the planet and their distance from their host star. A legend to the four major techniques for finding exoplanets is in the lower right The circled planets in green are those in our solar system. All the data comes from the NASA Exoplanet archive. (Joshua Winn, Princeton University)

 

Based on published papers, Winn found that the discovery of 1,943 new planets had been announced in papers between 2016 and today. Winn said the number is not formal as some debate remains whether a small number are planets or not.

Many of the planets discovered via the transit method come from the Kepler and K2 missions.  Kepler revolutionized the field with its four years of intensively observing a region of the sky for planet transits in front of their star.

The K2 mission began after the second of Kepler’s four stabilizing wheels failed. But adjustments were made and the second incarnation of Kepler has continued to find planets, though in a different way.

While a majority of exoplanets have been detected via the transit method, the first exoplanet was discovered by Mayor and Queloz via the radial velocity method — which involves ground-based measurements of the “wobble” of a star caused by the gravitational pull of a planet.

Many astronomers continue to use the technique because it provides more information about the minimum mass and orbital eccentricity of planet.  In addition, two high-precision, next-generation spectrometers for radial velocity measuring are now coming on line and are expected to significantly improve the detection of smaller planets using that method.

One is the ESPRESSO instrument (the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic) recently installed by the European Southern Observatory on the Very Large Telescope in Chile. The other newcomer is EXPRES, developed by scientists at Yale University, with support for the National Science Foundation.  The instrument, designed go look for Earth-sized planets, has been installed on the Lowell Observatory Discovery Channel Telescope in Arizona.

 

The Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) will search for exoplanets with unprecedented precision by looking at the minuscule changes in the properties of light coming from their host stars. This picture shows the front-end structure where the light beams coming from the four Very Large Telescopes are brought together and fed into fibers. They then deliver the photons to a spectrograph in another room, which makes the radial velocity measurements. (Giorgio Calderone, INAF Trieste)

The conference, which will go through the week, focuses both generally and in great detail on many of the core questions of the field:  how exoplanets are formed, what kind of stars are likely to produce what kinds of planets, the makeup and dynamics of exoplanet atmospheres, planet migration, the architecture of planetary systems.

And, of course, where new exoplanets might be found.  (Mostly around red dwarf stars, several scientists argued, and many in the relatively near neighborhood.)

Notably, many of the exoplanet questions being studied have clear implications for better understanding our own solar system.  In fact, it is often said that we won’t really understand the workings and history of our solar system, planets, moons, asteroids and more until we know a lot more about the billions and billion of other planetary systems in our galaxy.

Also notable for this conference is the lack of emphasis on biosignatures, habitability and the search for life beyond Earth.  The conference is billed as being about “exoplanet science,” and Queloz explained the absence of habitability and life-detection talks was based on the scientific progress made, or not made, in the past two years.

When it comes to planet detection, however, theory and practice are coming together in searches for exoplanets around smaller and cooler stars, and even around young stars where planets are just forming.  Such a planet discovery was announced this week coming from the European Space Agency’s Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument.

 

The first clear image of a planet caught while being formed,around the dwarf star PDS 70. The planet is visible as a bright point to the right of center. The star at the center is blacked out by a coronagraph mask that blocks its blinding light. The SPHERE instrument is on the European Southern Observatory’s Very Large Telescope (A. Müller et al./ESO)

 

The Cambridge exoplanet conference is the second in a series begun two years ago by Queloz and Kevin Heng, an exoplanet atmosphere theoretician at the University of Bern and director of the Center for Space and Habitability.

The two had been struck by how European exoplanet conferences seemed to be dominated by senior scientists, with little time or space for the many younger men and women coming up in the field.  The presentations also seemed more long and formal than needed.

So using funds from their own institutions to seed the conferences, Heng set up the first in Davos, Switzerland and Didier the second in Cambridge.  The idea has caught on, and similar gathering are now scheduled at two year intervals in Heidelberg, Las Vegas, Amsterdam, Porto and hopefully later in Asia, too.

There is no dearth of other exoplanet gatherings around the world, and attendees report that they are also very well attended.

But given sheer amount of work now being done in the field that was so lonely only twenty years ago,  they surely appear to be warranted.

And newsworthy, though no always reportable.

Three of the papers discussed in the Cambridge conference, for instance, are under reporting embargo from the journal Nature. And information from George Ricker, principal investigator for NASA’s Transiting Exoplanet Survey Satellite (TESS), about the early days of the mission are also under embargo.  Suffice it to say, however, that Ricker reported that things are going well for the exoplanet-hunting telescope.

 

This test image from one of the four cameras aboard the Transiting Exoplanet Survey Satellite (TESS) captures a swath of the southern sky along the plane of our galaxy. TESS is designed to study exoplanets around the brightest stars, and is expected to cover more than 400 times the amount of sky shown in this image. (NASA/MIT/TESS)

While the initial discovery of an exoplanet was difficult for sure, what the much, much larger field is grappling with now is clearly even more challenging.  With that in mind, I asked Queloz what he hoped to see from exoplanets in the years ahead.

“We have reached the point where we know stars usually have planets.  But what we are still looking for is an Earth twin — a planet clearly like ours.  That we have not found.  Before I retire, what I hope for is the discovery of that Earth twin.”

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Joining the Microscope and the Telescope in the Search for Life Beyond Earth

Facebooktwittergoogle_plusredditpinterestlinkedinmail

 

Niki Parenteau of NASA’s Ames Research Center is a microbiologist working in the field of exoplanet and Mars biosignatures. She adds a laboratory biology approach to a field generally known for its astronomers, astrophysicists and planetary scientists. (Marisa Mayer, Stanford University.)

 

The world of biology is filled with labs where living creatures are cultured and studied, where the dynamics of life are explored and analyzed to learn about behavior, reproduction, structure, growth and so much more.

In the field of astrobiology, however, you don’t see much lab biology — especially when it comes to the search for life beyond Earth.  The field is now largely focused on understanding the conditions under which life could exist elsewhere, modeling what chemicals would be present in the atmosphere of an exoplanet with life, or how life might begin as an organized organism from a theoretical perspective.

Yes, astrobiology includes and learns from the study of extreme forms of life on Earth, from evolutionary biology, from the research into the origins of life.

But the actual bread and butter of biologists — working with lifeforms in a lab or in the environment — plays a back seat to modeling and simulations that rely on computers rather than actual life.

Niki Parenteau with her custom-designed LED array, can reproduce the spectral features of different simulated stellar and atmospheric conditions to test on primitive microbes. (Marc Kaufman)

There are certainly exceptions, and one of the most interesting is the work of Mary “Niki” Parenteau at NASA’s Ames Research Center in the San Francisco Bay area.

A microbiologist by training, she has been active for over five years now in the field of exoplanet biosignatures — trying to determine what astronomers could and should look for in the search for extraterrestrial life.

Working in her lab with actual live bacteria in laboratory flasks, test tubes and tanks, she is conducting traditional biological experiments that have everything to do with astrobiology.

She takes primitive bacteria known to have existed in some form on the early Earth, and she blasts them with the radiation that would have hit the planet at the time to see under what conditions the organisms can survive.  She has designed ingenious experiments using different forms of ultraviolet light and a LED array that simulate the broad range of radiations that would come from different types of stars as well.

What makes this all so intriguing is that her work uses, and then moves forward, cutting edge modeling from astronomers and astrobiologists regarding thick photochemical hazes understood to have engulfed the early Earth — making the planet significantly colder but also possibly providing some protection from deadly ultraviolet radiation.

That was a time when the atmosphere held very little oxygen, and when many organisms had to make their living via carbon dioxide and sulfur-based photosynthesis that did not use water and did not produce oxygen. This kind of photosynthesis has been the norm for much of the history of life on Earth, and certainly could be common on many exoplanets orbiting other stars as well.

So anything learned about how these early organisms survived in frigid conditions with high ultraviolet radiation — and what potentially detectable byproducts they would have produced under those conditions — would be important in the search for biosignatures and extraterrestrial life.

Parenteau has spent years learning from astronomers working to find ways to characterize exoplanet biosignatures, and she has been eager to convert her own work into something useful to them.

“These are not questions that can be answered by one discipline,” she told me.  “I certainly understand that when it comes to exoplanet biosignatures and life detection, astronomy has to be in the lead.  But biologists have a role to play, especially when it comes to characterizing what life produces.”

When haze built up in the atmosphere of Archean Earth, the young planet might have looked like this artist’s interpretation – a pale orange dot. A team led by Goddard scientists thinks the haze was self-limiting, cooling the surface by about 36 degrees Fahrenheit (20 Kelvins) – not enough to cause runaway glaciation. The team’s modeling suggests that atmospheric haze might be helpful for identifying earthlike exoplanets that could be habitable. (NASA’s Goddard Space Flight Center/Francis Reddy)

Here is the back story to Parenteau’s work:

Recent work by NASA Goddard Space Flight Center astronomer and astrobiologist Giada Arney and colleagues points to the existence of a thick haze around the early Archean Earth and probably today around some, and perhaps many, exoplanets.  This haze — which is more like pollution than clouds — is produced by the interaction of strong incoming radiation and chemicals (most commonly methane and carbon dioxide) already in the atmosphere.

The haze, Arney concluded based on elaborate modeling of those radiation-chemical interactions, would be hard on any life that might exist on the planet because it would reduce surface temperatures significantly, though probably not always fatally.

Giada Arney is an astronomer and astrobiologist at NASA’s Goddard Space Flight Center.  As with Parenteau, her general approach to science was formed at the University of Washington’s pioneering Virtual Planetary Laboratory. (NASA/Goddard Space Flight Center)

On the other hand, the haze would also have the effect of blocking 84 percent of the destructive ultraviolet radiation bombarding the planet — especially the most damaging ultraviolet-C light that would otherwise destroy nucleic acids in cells and disrupt the working of DNA.  (Ultraviolet-C radiation is used as a microbial disinfectant.)

Ozone in our atmosphere now plays the role of blocking the most destructive forms of UV radiation, but ozone is formed from oxygen and on early Earth there was very little oxygen at all.

So how did organisms survive the radiation assault?  Might it have been that haze? And might there be hazes surrounding exoplanets as well?  (None have been found so far.)

It’s difficult enough to sort through the potentially protective role of a haze on early Earth.  To do it for exoplanets requires not only an understanding of the effects of a haze on ultraviolet light, but also how the dynamics of a haze would change based on the amounts and forms of radiation emitted by different types of stars.

It’s all very complicated, but the answers needn’t be theoretical, Arney concluded. They could be tested in a lab.

And that’s where Parenteau comes in, with her desire and ability to design biological experiments that might help scientists understand better how to look for life on distant exoplanets.

“I knew that (Parenteau) had been super interested in this kind of question for a long time,” Arney said.  “She one of the few people in the world with the know-how to simulate an atmosphere, and probably the only one in the world who could do the experiment.”

The 48 LEDs (light-emitting diodes) of the board designed and created by Parenteau and Ames intern Cameron Hearne. Each one is independently controlled and can be used to simulate the amount of radiation arriving on a planetary surface — taking into account the flux from the planet’s star and some aspects of its atmosphere.  A microbe is then exposed to the radiation to see whether or how it can survive. (Niki Parenteau.)

Parenteau’s experiment at first looks pretty low-tech, but in fact it’s very much custom-designed and custom-built.

The ultraviolet bulbs include the powerful, germicidal ultraviolet-C variety, some of the glass for the experiment is made of special quartz that is transparent to that ultraviolet light, the LED array has 48 tiny bulbs that can be controlled by software to provide different amounts and kinds of light as identified and provided by Arney

Before designing and making her own LED board with Ames intern Cameron Hearne, Parenteau met with solar panel specialists who might be able to provide an instrument she could use, but it turned out they were very expensive and not nearly as versatile as she wanted.  Having grown up on a farm in northern Idaho, Parenteau is comfortable with making things from scratch, and her experiments reflect that comfort and talent.

How would Parenteau determine whether the haze does indeed protect the microbial cells after exposing them to the various radiation regimes?  This is how she explained the process, which measures the number of cells living or dead given a simulated UV and stellar bombardment:

“Imagine the cells as soap bubbles in a clear glass.  If you look through the glass, the soap bubbles prevent you from seeing through and the glass has a higher ‘optical density.’ However, if you pop or lyse the soap bubbles, suddenly you can see through the glass and the optical density decreases. 

“The latter represents dead ‘popped’ cells that were killed by the UV irradiation.   I predict that by simulating the spectral qualities of the haze, which decreases the UV flux by 84%, more cells will survive.”

The Parenteau-Arney collaboration is being funded through a National Astrobiology Institute grant to the University of Washington’s famously-interdisciplinary Virtual Planetary Laboratory.

The microbes-and-haze experiment is one of many that Parenteau is working on in the general field of biosignatures.  While the haze experiment is primarily designed to determine if microbes could survive a UV bombardment if a haze was present, she is also working on the central question of what might constitute a biosignature.

With that in mind, she is also measuring the gases produced by microbes under different radiation and atmospheric conditions, and that is directly applicable to searching for extraterrestrial life.

A densely-packed community of microbes, including oxygen-producing cyanobacteria as well as anoxygenic purple and green bacteria, being studied with Parenteau’s LED array. A central question involves what gases are emitted and might be detectable on a distant planet. (Niki Parenteau)

 

Parenteau’s lab glove box with green, purple and other bacteria that is regularly exposed to radiation conditions believed to have existed on early Earth when a photochemical haze is believed to have been present.  (Marc Kaufman)

If and when she does find particularly interesting results in the gas measurements inside the anaerobic glove box, she says, she knows where to go.

“I would hand the results to an astronomer.  We could say that if a particular kind of exoplanet with a particular atmosphere had microbial life, this is the suite of gases we would expect to be emitted.”

Those gases, Parenteau says, may be photochemically altered as they as they rise through the planet’s atmosphere to the upper levels where they could be detected by the telescopes of the future. But in the challenging and complex world of biosignatures, every bit of hard-won data is most valuable since it could some day lead to a discovery for the ages.

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

NASA’s Planet-Hunter TESS Has Just Been Launched to Check Out the Near Exoplanet Neighborhood

Facebooktwittergoogle_plusredditpinterestlinkedinmail

This column was written by my colleague Elizabeth Tasker, now at the Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Sciences (ISAS).  Trained as an astrophysicist, she researches planet and galaxy formation and also writes on space science topics.  Her book, “The Planet Factory,” came out last year.

The TESS exoplanet hunter telescope launched today on a SpaceX Falcon 9 rocket at the Cape Canaveral Air Force Station in Cape Canaveral, Fla. The space telescope will survey almost the entire sky, staring at the brightest and closest stars in an effort to find any planets that might be orbiting them. (AP Photo/John Raoux)

On January 5, 2010, NASA issued  landmark press release : the Kepler Space Telescope had discovered its first five new extra-solar planets.

The previous twenty years had seen the discovery of just over 400 planets beyond the solar system. The majority of these new worlds were Jupiter-mass gas giants, many bunched up against their star on orbits far shorter than that of Mercury. We had learnt that our planetary system was not alone in the Galaxy, but small rocky worlds on temperate orbits might still have been rare.

Based on just six weeks of data, these first discoveries from Kepler were also hot Jupiters; the easiest planets to find due to their large size and swiftly repeating signature as they zipped around the star. But expectations were high that this would be just the beginning.

“We expected Jupiter-size planets in short orbits to be the first planets Kepler could detect,” said Jon Morse, director of the Astrophysics Division at NASA Headquarters at the time the discovery was announced. “It’s only a matter of time before more Kepler observations lead to smaller planets with longer period orbits, coming closer and closer to the discovery of the first Earth analog.”

Morse’s prediction was to prove absolutely right. Now at the end of its life, the Kepler Space Telescope has found 2,343 confirmed planets, 30 of which are smaller than twice the size of the Earth and in the so-called “Habitable Zone”, meaning they receive similar levels of insolation –the amount of solar radiation reaching a given area–to our own planet.

Yet, the question remains: were any of these indeed Earth analogs?

In just a few decades, thanks to Kepler, the Hubble Space Telescope and scores of astronomers at ground-based observatories, we have gone from suspecting the presence of exoplanets to knowing there are more exoplanets than stars in our galaxy. (NASA/Ames Research Station; Jessie Dotson and Wendy Stenzel)

It was a question that Kepler was not equipped to answer. Kepler identifies the presence of a planet by looking for the periodic dip in starlight as a planet passes across the star’s surface. This “transit technique” reveals the planet’s radius and its distance from the star, which provides an estimate of the insolation level but nothing about the planet surface conditions.

To distinguish between surfaces like those of Earth or Venus, a new generation of space telescopes is required.

These are the tasks before NASA’s long-awaited flagship James Webb Space Telescope (JWST) and  WFIRST  (if ultimately funded,)  Europe’s ARIEL mission and potentially what would be the 2030s flagship space telescope LUVOIR, if it is selected by NASA over three competitors. These telescopes will be able to probe exoplanet atmospheres and will have the capacity to measure the faint reflected light of the planets to study, via spectroscopy, their composition, geology and possibly biology.

But there is one big problem. While Kepler has found thousands of exoplanets, very few are suitable targets for these studies.

At the time of Kepler’s launch, we had no idea whether planet formation was common or anything about the distribution of planet sizes. Kepler therefore performed a planet census. By staring continuously at a small patch of the sky, Kepler waited out the time needed to see planets whose orbits took days, months and then years to complete.

From this, we discovered that planet formation takes place around the majority of stars, small planets are common and planets frequently get shoveled inwards onto short orbits close to the star. The cost of focusing on a small patch of sky is that many of the planets Kepler discovered were very distant. This is like staring into a forest; if you try to count 100 trees by looking in just one direction, many will be deep in the wood and far away from you.

Looping animated gif of the unique orbit TESS will fly. At 13.7 days, it is exactly half of the moon’s orbit, which lets the moon stabilize it. During the part of the orbit marked with blue, TESS will observe the sky, collecting science data. During the orange part, when TESS is closest to Earth, it will transmit that data to the ground. (NASA’s Goddard Space Flight Center)”

These distant planets are great for number counting, but they are too far away for their atmosphere or reflected light to be detected. In such cases, even enticing properties such as an orbit within the habitable zone have little meaning as follow-up studies that could probe signs of life are not possible.

Yet the census result that short-period planets were common allows for an entirely new type of mission. A survey to focus only on the bright, close stars whose planets would be near enough to detect their atmospheres with instruments such as the JWST. Prior to Kepler, we did not know such a telescope would find any planets. Now, we can be certain.

And that is why TESS was launched on Wednesday.

Standing for the Transiting Exoplanet Survey Satellite, TESS is a NASA mission to look for planets around bright stars less than 300 light years from Earth. All told, TESS will look at 200,000 stars spread over 85% of the sky in two years. For comparison, the field of view for Kepler had a sky coverage of just 0.25% and looked as deep as 3,000 light years into space.

Such a wide sweep means TESS cannot spend long staring at any one position. TESS will observe most of the sky for about 27 days, which is ample for detecting planets on ten day orbits, the most common orbital period found by Kepler. Over the ecliptic pole (90 degrees from the Sun’s position), TESS will observe somewhere between 27 and 351 days.  This region is where the JWST will be able to study planets throughout the year.

Image showing the planned viewing regions for the Transiting Exoplanet Survey Satellite mission. (Roland Vanderspek, Massachusetts Institute of Technology)

Bright and close by red dwarf stars, and the planets around them, are a prime target for TESS.  These stars are smaller and cooler than our sun, which makes it easier to spot the subtle dip in brightness from smaller planets. The cooler temperatures also mean that planets can orbit much closer to the star without roasting. A ten day orbit is still unlikely to be within the habitable zone, but orbits lasting between 20 – 40 days (which TESS will spot near the ecliptic poles) may receive similar insolation levels to the Earth.

A recent paper submitted to the Astrophysical Journal by Sarah Ballard, an exoplanet astronomer at MIT, estimated that TESS may find as many as 1000 planets orbiting red dwarfs and around 15 of these may be less than twice the size of the Earth and orbit within the habitable zone; ideal candidates for a JWST observation.

Previous predictions for TESS suggested the telescope will find a total (all orbits around all stars) of 500 planets less than twice the size of the Earth and 20,000 exoplanets over the first two years. Ballard’s new numbers for planets around red dwarfs are 1.5 times higher than previous predictions, so these totals look likely to be lower limits.

While future atmospheric studies with JWST are exciting, these observations will still be very challenging. Time on this multi-purpose telescope will also be limited and we have to wait until 2020 for the launch. However, the bright stars targeted by TESS are also perfect for a second type of planet hunting method: the radial velocity technique.

This second-most prolific planet-hunting technique looks for the slight shift in the wavelength of the light as the star wobbles due to the gravitational pull of the planet. As the star moves away from Earth, the light waves stretch and redden. The light shifts towards blue as the star wobbles back our way. The result is a measurement of the planet’s minimum mass. The true mass can be found if the inclination of the orbit is known, which can be measured if the planet is also seen to transit.

With both a transit measurement from TESS and a radial velocity measurement from another ground-based instrument such as HARPS, on Europe’s La Silla Telescope in Chile, the average density of the planet can be calculated.

The transit technique identifies planets by the tiny drop in starlight measured as a planet passes in front of the star.

 

The radial velocity technique identifies planets via the shift in the wavelength of the light of a star as it wobbles due to the presence of a planet.

The planet density can reveal whether a world is gaseous or rocky or heavy in volatiles such as water. This is a particularly interesting question for the “super Earths” that are one of the most common class of planet found by Kepler, but for which we have no solar system analog. While an average density can only be a crude estimate of the planet interior, it can potentially be measured for a large number of the planets found by TESS and is an extremely useful guide for narrowing down planet formation theories.

But before TESS can find these planets, it first has to get into a rather unusual orbit. From launch on the SpaceX Falcon 9, TESS will boost its orbit using solid rocket motors (ignitable cylinders of solid propellent) until it is able to get a kick from the Moon’s gravity. The need for the lunar push was why the launch window for TESS was a very brief 30 seconds.

After the lunar shove, TESS will enter a highly elliptical orbit around the Earth, circling our planet every 13.7 days. This means TESS will orbit the Earth twice in the time it takes the Moon to orbit once: a situation known as a 2:1 resonance.

Planets that orbit in very close packed systems are often seen to be in similar resonant orbits. For examples, the TRAPPIST-1  worlds are in resonance and within our own solar system, the Jovian moons of Io, Europa and Ganymede orbit Jupiter in a 4:2:1 resonance.

This common occurrence is because resonant orbits are very stable, due to the pull from the gravity of the neighboring planets or moons exactly cancelling out. It is exactly for this reason that such an orbit has been chosen for TESS. With the gravitational tugs from the Moon cancelling out over an orbit, TESS’s path around the Earth will remain stable for decades. This potentially allows the mission to continue far beyond its designated two year lifespan.

TESS will take about 60 days to reach its final orbit and power-on, initialize and test its instruments. Science operations are expected to begin properly 68 days after launch. The first full data release from TESS is planned for next January, but with science operations starting in the summer we may hear the first results from TESS in the second half of this year.

Unlike with Kepler, this will be the data that will let us get to know our neighborhood.

Facebooktwittergoogle_plusredditpinterestlinkedinmail