A National Strategy for Finding and Understanding Exoplanets (and Possibly Extraterrestrial Life)

Facebooktwittergoogle_plusredditpinterestlinkedinmail
The National Academies of Science, Engineering and Medicine took an in-depth look at what NASA, the astronomy community and the nation need to grow the burgeoning science of exoplanets — planets outside our solar system that orbit a star. (NAS)

 

An extensive, congressionally-directed study of what NASA needs to effectively learn how exoplanets form and whether some may support life was released today, and it calls for major investments in next-generation space and ground telescopes.  It also calls for the adoption of an increasingly multidisciplinary approach for addressing the innumerable questions that remain unanswered.

While the recommendations were many, the top line calls were for a sophisticated new space-based telescope for the 2030s that could directly image exoplanets, for approval and funding of the long-delayed and debated WFIRST space telescope, and for the National Science Foundation and to help fund two of the very large ground-based telescopes now under development.

The study of exoplanets has seen remarkable discoveries in the past two decades.  But the in-depth study from the private, non-profit National Academies of Sciences, Engineering and Medicine concludes that there is much more that we don’t understand than that we do, that our understandings are “substantially incomplete.”

So the two overarching goals for future exoplanet science are described as these:

 

  • To understand the formation and evolution of planetary systems as products of star formation and characterize the diversity of their architectures, composition, and environments.
  • To learn enough about exoplanets to identify potentially habitable environments and search for scientific evidence of life on worlds orbiting other stars.

 

Given the challenge, significance and complexity of these science goals, it’s no wonder that young researchers are flocking to the many fields included in exoplanet science.  And reflecting that, it is perhaps no surprise that the NAS survey of key scientific questions, goals, techniques, instruments and opportunities runs over 200 pages. (A webcast of a 1:00 pm NAS talk on the report can be accessed here.)

 


Artist’s concept showing a young sun-like star surrounded by a planet-forming disk of gas and dust.
(NASA/JPL-Caltech/T. Pyle)

These ambitious goals and recommendations will now be forwarded to the arm of the National Academies putting together 2020 Astronomy and Astrophysics Decadal Survey — a community-informed blueprint of priorities that NASA usually follows.

This priority-setting is probably most crucial for the two exoplanet direct imaging missions now being studied as possible Great Observatories for the 2030s — the paradigm-changing space telescopes NASA has launched almost every decade since the 1970s.

HabEx (the Habitable Exoplanet Observatory) and LUVOIR (the Large UV/Optical/IR Surveyor) are two direct-imaging exoplanet projects in conception phase that would indeed significantly change the exoplanet field.

Both would greatly enhance scientists’ ability to detect and characterize exoplanets. But the more ambitious LUVOIR in particular, would not only find many exoplanets in all stages of formation, but could readily read chemical components of the atmospheres and thereby get clear data on whether the planet was habitable or even if it supported life.  The LUVOIR would provide either an 8 meter or a record-breaking 15-meter space telescope, while HabEx would send up a 4 meter mirror.

HabEx and LUVOIR are competing with two other astrophysics projects for that Great Observatory designation, and so NAS support now and prioritizing later is essential if they are to become a reality.

 

An artist notional rendering of an approximately 15-meter telescope in space. This image was created for an earlier large space telescope feasibility project called ATLAST, but it is similar to what is being discussed inside and outside of NASA as a possible great observatory after the James Webb Space Telescope and the Wide-Field Infrared Survey Telescope. (NASA)

These two potential Great Observatories will be costly and would take many years to design and build.  As the study acknowledges and explains, “While the committee recognized that developing a direct imaging capability will require large financial investments and a long time scale to see results, the effort will foster the development of the scientific community and technological capacity to understand myriad worlds.”

So a lot is at stake.  But with budget and space priorities in flux, the fate of even the projects given the highest priority in the Decadal Survey remains unclear.

That’s apparent in the fact that one of the top recommendations of today’s study is the funding of the number one priority put forward in the 2010 Astronomy and Astrophysics Decadal Survey — the Wide Field Infrared Survey Telescope (WFIRST.)

The project — which would boost the search for exoplanets further from their stars than earlier survey mission using microlensing– was cancelled in the administration’s proposed 2019 federal budget.  Congress has continued funding some development of this once top priority, but its future nonetheless remains in doubt.

WFIRST could have the capability of directly imaging exoplanets if it were built with technology to block out the blinding light of the star around which exoplanets would be orbiting — doing so either with internal coronagraph or a companion starshade.  This would be novel technology for a space-based telescope, and the NAS survey recommends it as well.

 

An artist’s rendering of a possible “starshade” that could be launched to work with WFIRST or another space telescope and allow the telescope to take direct pictures of other Earth-like planets. (NASA/JPL-Caltech)

The list of projects the study recommends is long, with these important additions:

That “ground-based astronomy – enabled by two U.S.-led telescopes – will also play a pivotal role in studying planet formation and potentially terrestrial worlds, the report says. The future Giant Magellan telescope (GMT) and proposed Thirty Meter Telescope (TMT) would allow profound advances in imaging and spectroscopy – absorption and emission of light – of entire planetary systems. They also could detect molecular oxygen in temperate terrestrial planets in transit around close and small stars, the report says.”

The committee concluded that the technology road map to enable the full potential of GMT and TMT in the study of exoplanets is in need of investments, and should leverage the existing network of U.S. centers and laboratories. To that end, the report recommends that the National Science Foundation invest in both telescopes and their exoplanet instrumentation to provide all-sky access to the U.S. community.

And for another variety of ground-based observing the study called for the funding of a project to substantially increase the precision of instruments that find and measure exoplanets using the detected “wobble” of the host star.  But stars are active with or without a nearby exoplanet, and so it has been difficult to achieve the precision that astronomers using this “radial velocity” technique need to find and characterize smaller exoplanets.

Several smaller efforts to increase this precision are under way in the U.S., and the European Southern Observatory has a much larger project in development.

Additionally, the report recommends that the administrators of the James Webb Space Telescope give significant amounts of observing time to exoplanet study, especially early in its time aloft (now scheduled to begin in 2021.)  The atmospheric data that JWST can potentially collect could and would be used in conjunction with results coming from other telescopes, and to further study of exoplanet targets that are already promising based on existing theories and findings.

 

Construction has begun on the Giant Magellan Telescope at the Carnegie Institution’s Las Campanas Observatory in Chile. This artist rendering shows what the 24.5 meter (80 foot) segmented mirror and observatory will look like when completed, estimated to be in 2024. (Mason Media Inc.)

 

While the NAS report gives a lot of attention to instruments and ways to use them, it also focuses as never before on astrobiology — the search for life beyond Earth.

Much work has been done on how to determine whether life exists on a distant planet through modeling and theorizing about biosignatures.  The report encourages scientists to expand that work and embraces it as a central aspect of exoplanet science.

The study also argues that interdisciplinary science — bringing together researchers from many disciplines — is the necessary way forward.  It highlights the role of the Nexus for Exoplanet System Science, a NASA initiative which since 2015 has brought together a broad though limited number  of science teams from institutions across the country to learn about each other’s work and collaborate whenever possible.

The initiative itself has not required much funding, instead bringing in teams that had been supported with other grants.   However, that may be changing. One of the study co-chairs, David Charbonneau of Harvard University, said after the release of the study that the “promise of NExSS is tremendous…We really want that idea to grow and have a huge impact.”

The NAS study itself recommends that “building on the NExSS model, NASA should support a cross-divisional exoplanet research coordination network that includes additional membership opportunities via dedicated proposal calls for interdisciplinary research.”

The initiative, I’m proud to say, sponsors this interdisciplinary column in addition to all that interdisciplinary science.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

False Positives, False Negatives; The World of Distant Biosignatures Attracts and Confounds

Facebooktwittergoogle_plusredditpinterestlinkedinmail
This artist’s illustration shows two Earth-sized planets, TRAPPIST-1b and TRAPPIST-1c, passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. NASA’s Hubble Space Telescope looked for signs of atmospheres around these planets. (NASA/ESA/STScI/J. de Wit, MIT)

What observations, or groups of observations, would tell exoplanet scientists that life might be present on a particular distant planet?

The most often discussed biosignature is oxygen, the product of life on Earth.  But while oxygen remains central to the search for biosignatures afar, there are some serious problems with relying on that molecule.

It can, for one, be produced without biology, although on Earth biology is the major source.  Conditions on other planets, however, might be different, producing lots of oxygen without life.

And then there’s the troubling reality that for most of the time there has been life on Earth, there would not have been enough oxygen produced to register as a biosignature.  So oxygen brings with it the danger of both a false positive and a false negative.

Wading through the long list of potential other biosignatures is rather like walking along a very wet path and having your boots regularly pulled off as they get captured by the mud.  Many possibilities can be put forward, but all seem to contain absolutely confounding problems.

With this reality in mind, a group of several dozen very interdisciplinary scientists came together more than a year ago in an effort to catalogue the many possible biosignatures that have been put forward and then to describe the pros and the cons of each.

“We believe this kind of effort is essential and needs to be done now,” said Edward Schwieterman, an astronomy and astrobiology researcher at the University of California, Riverside (UCR).

“Not because we have the technology now to identify these possible biosignatures light years away, but because the space and ground-based telescopes of the future need to be designed so they can identify them. ”

“It’s part of what may turn out to be a very long road to learning whether or not we are alone in the universe”.

 

Artistic representations of some of the exoplanets detected so far with the greatest potential to support liquid surface water, based on their size and orbit.  All of them are larger than Earth and their composition and habitability remains unclear. They are ranked here from closest to farthest from Earth.  Mars, Jupiter, Neptune an Earth are shown for scale on the right. (Planetary Habitability Laboratory, managed by the University of Puerto Rico at Arecibo.)

The known and inferred population of exoplanets — even small rocky exoplanets — is now so vast that it’s tempting to assume that some support life and that some day we’ll find it.  After all,  those billions of planets are composed of same basic chemical elements as Earth and are subject to the same laws of physics.

That assumption of life widespread in the galaxies may well turn out to be on target.  But assuming this result, and proving or calculating a high probability of finding extraterrestrial life, are light years apart.

The timing of this major community effort is hardly accidental.  There is a National Academy of Sciences effort underway to review progress in the science of reading possible biosignatures from distant worlds, something that I wrote about recently.

Edward Schwieterman, spent six years at the University of Washington’s Virtual Planetary Laboratory.  He now works with the NASA Astrobiology Institute Alternative Earths team UCR.

The results from the NAS effort will in term flow into the official NAS decadal study that will follow and will recommend to Congress priorities for the next ten or twenty years.  In addition, two NASA-ordered science and technology definition teams are currently working on architectures for two potential major NASA missions for the 2030s — HabEx (the Habitable Exoplanet Imaging Mission) and Luvoir (the Large Ultraviolet/Optical/Infrared Surveyor.)

The two mission proposals, which are competing with several others, would provide the best opportunity by far to determine whether life exists on other distant planets.

With these formal planning and prioritizing efforts as a backdrop, NASA’s Nexus for Exoplanet System Science (NExSS) called for a biosignatures workshop in the fall of 2016 and brought together scientists from many disciplines to wrestle with the subject.  The effort led to the white paper submitted to NAS and will result in and will result in the publication of series of five detailed papers in the journal Astrobiology this spring.” The overview paper with Schwieterman as first author, which has already been made available to the community for peer review, is expected to lead off the package.

So what did they find?  First off, that Earth has to be their guide.

“Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet,” the paper reads. “Aided by the universality of the laws of physics and chemistry, we turn to Earth’s biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere.

Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a state-of-the-art overview of our current understanding of potential exoplanet biosignatures including gaseous, surface, and temporal biosignatures.”

In other words, potential biosignatures in the atmosphere, on the ground, and that become apparent over time.  We’ll start with the temporal:

These vegetation maps were generated from MODIS/Terra measurements of the Normalized Difference Vegetation Index (NDVI). Significant seasonal variations in the NDVI are apparent between northern hemisphere summer  and winter. (Reto Stockli, NASA Earth Observatory Group, using data from the MODIS Land Science Team.)

Vegetation is probably clearest example of how change-over-time can be a biosignature.  As these maps show and we all know, different parts of the Earth have different seasonal colorations.  Detecting exoplanetary change of this sort would be a potentially strong signal, though it could also have some non-biological explanations.

If there is any kind of atmospheric chemical corroboration, then the time signal would be a strong one.  That corroboration could come in seasonal modulations of biologically important gases such as CO2 or O2.  Changes in cloud cover and the periodic presence of volcanic gases can also be useful markers over time.

Plant pigments themselves which have been proposed as a surface biosignature.  Observed in the near infrared portion of the electromagnetic spectrum, the pigment chlorophyll — the central player in the process of photosynthesis — shows a sharp increase in reflectance at a particular wavelength.  This abrupt change is called the “red edge,” and is a measurement known to exist only which chlorophyll engaged in photosynthesis.

So the “red edge,” or parallel dropoffs in reflectance of other pigments on other planets, is another possible biosignature in the mix.

And then there is “glint,” reflections from exoplanets that come from light hitting water.

True-color image from a model (left) compared to a view of Earth from the Earth and Moon Viewer (http://www.fourmilab.ch/cgi-bin/Earth/). A glint spot in the Indian Ocean can be clearly seen in the model image.

Since biosignature science essentially requires the presence of H2O on a planet, the clear detection of an ocean is part of the process of assembling signatures of potential life.  Just as detecting oxygen in the atmosphere is important, so too is detecting unmistakable surface water.

But for reasons of both science and detectability, the chemical make-up exoplanet atmospheres is where much biosignature work is being done.  The compounds of interest include (but are not limited to) ozone, methane, nitrous oxide, sulfur gases, methyl chloride and less specific atmospheric hazes.  All are, or have been, associated with life on Earth, and potentially on other planets and moons as well.

The Schwieterman et al review looks at all these compounds and reports on the findings of researchers who have studied them as possible biosignatures.  As a sign of how broadly they cast their net, the citations alone of published biosignature papers number more than 300.

(Sara Seager and William Bains of MIT, both specialists in exoplanet atmospheres, have been compiling a separate and much broader list of potential biosignatures, even many produced in very small quantities on Earth.  Bains is a co-author on one of the five biosignature papers for the journal Astrobiology.)

All this work, Schwieterman said, will pay off significantly over time.

“If our goal is to constrain the search for life in our solar neighborhood, we need to know as much as we possibly can so the observatories have the necessary capabilities.  We could possibly save hundreds of millions or billions of dollars by constraining the possibilities.”

“The strength of this compilation is the full body of knowledge, putting together what we know in a broad and fast-developing field,” Schwieterman said. ”

He said that there’s such a broad range of possible biosignatures, and so many conditions where some might be more or less probable, that’s it’s essential to categorize and prioritize the information that has been collected (and will be collected in the future.)

“We have a lot of observations recorded here, but they will all have their ambiguities,” he said.  “Our goal as scientists will be to take what we know and work to reduce those ambiguities. It’s an enormous task.”

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail