What Would Happen If Mars And Venus Swapped Places?

Venus, Earth and Mars (ESA).


What would happen if you switched the orbits of Mars and Venus? Would our solar system have more habitable worlds?

It was a question raised at the “Comparative Climatology of Terrestrial Planets III”; a meeting held in Houston at the end of August. It brought together scientists from disciplines that included astronomers, climate science, geophysics and biology to build a picture of what affects the environment on rocky worlds in our solar system and far beyond.

The question regarding Venus and Mars was proposed as a gedankenexperiment or “thought experiment”; a favorite of Albert Einstein to conceptually understand a topic. Dropping such a problem before the interdisciplinary group in Houston was meat before lions: the elements of this question were about to be ripped apart.

The Earth’s orbit is sandwiched between that of Venus and Mars, with Venus orbiting closer to the sun and Mars orbiting further out. While both our neighbors are rocky worlds, neither are top picks for holiday destinations.

Mars has a mass of just one-tenth that of Earth, with a thin atmosphere that is being stripped by the solar wind; a stream of high energy particles that flows from the sun. Without a significant blanket of gases to trap heat, temperatures on the Martian surface average at -80°F (-60°C). Notably, Mars orbits within the boundaries of the classical habitable zone (where an Earth-like planet could maintain surface water)  but the tiny planet is not able to regulate its temperature as well as the Earth might in the same location.


The classical habitable zone around our sun marks where an Earth-like planet could support liquid water on the surface (Cornell University).


Unlike Mars, Venus has nearly the same mass as the Earth. However, the planet is suffocated by a thick atmosphere consisting principally of carbon dioxide. The heat-trapping abilities of these gases soar surface temperatures to above a lead-melting 860°F (460°C).

But what if we could switch the orbits of these planets to put Mars on a warmer path and Venus on a cooler one? Would we find that we were no longer the only habitable world in the solar system?

“Modern Mars at Venus’s orbit would be fairly toasty by Earth standards,” suggests Chris Colose, a climate scientist based at the NASA Goddard Institute for Space Studies and who proposed the topic for discussion.

Dragging the current Mars into Venus’s orbit would increase the amount of sunlight hitting the red planet. As the thin atmosphere does little to affect the surface temperature, average conditions should rise to about 90°F (32°C), similar to the Earth’s tropics. However, Mars’s thin atmosphere continues to present a problem.

Colose noted that without a thicker atmosphere or ocean, heat would not be transported efficiently around Mars. This would lead to extreme seasons and temperature gradients between the day and night. Mars’s thin atmosphere produces a surface pressure of just 6 millibars, compared to 1 bar on Earth. At such low pressures, the boiling point of water plummets to leave all pure surface water frozen or vaporized.

Mars does have have ice caps consisting of frozen carbon dioxide, with more of the greenhouse gas sunk into the soils. A brief glimmer of hope for the small world arose in the discussion with the suggestion these would be released at the higher temperatures in Venus’s orbit, providing Mars with a thicker atmosphere.


The surface of Mars captured by a selfie taken by the Curiosity rover at a site named Mojave. (NASA/JPL-Caltech/MSSS.)


However, recent research suggests there is not enough trapped carbon dioxide to provide a substantial atmosphere on Mars. In an article published in Nature Astronomy, Bruce Jakosky from the University of Colorado and Christopher Edwards at Northern Arizona University estimate that melting the ice caps would offer a maximum of a 15 millibars atmosphere.

The carbon dioxide trapped in the Martian rocks would require temperatures exceeding 300°C to be liberated, a value too high for Mars even at Venus’s orbit. 15 millibars doubles the pressure of the current atmosphere on Mars and surpasses the so-called “triple point” of water that should permit liquid water to exist. However, Jakosky and Edwards note that evaporation would be rapid in the dry martian air. Then we hit another problem: Mars is not good at holding onto atmosphere.

Orbiting Mars is NASA’s Mars Atmosphere and Volatile Evolution Mission (MAVEN). Data from MAVEN has revealed that Mars’s atmosphere has been stripped away by the solar wind. It is a problem that would be exacerbated at Venus’s orbit.

“Atmospheric loss would be faster at Venus’s current position as the solar wind dynamic pressure would increase,” said Chuanfei Dong from Princeton University, who had modeled atmospheric loss on Mars and extrasolar planets.

Artist’s rendering of a solar storm hitting Mars and stripping ions from the planet’s upper atmosphere (credit: NASA/GSFC).

This “dynamic pressure” is the combination of the density of particles from the solar wind and their velocity. The velocity does not change greatly between Mars and Venus —explained Dong— but Venus’s closer proximity to the sun boosts the density by almost a factor of 4.5. This would mean that atmosphere on Mars would be lost even more rapidly than at its current position.

“I suspect it would just be a warmer rock,” Colose concluded.

While Mars seems to fare no better at Venus’s location, what if Venus were to be towed outwards to Mars’s current orbit? Situated in the habitable zone, would this Earth-sized planet cool-off to become a second habitable world?

Surprisingly, cooling Venus might not be as simple as reducing the sunlight. Venus has a very high albedo, meaning that the planet reflects roughly 75% of the radiation it receives. The stifling temperatures at the planet surface are due not to a high level of sunlight but to the thickness of the atmosphere. Conditions on the planet may therefore not be immediately affected if Venus orbited in Mars’s cooler location.

“Venus’s atmosphere is in equilibrium,” pointed out Kevin McGouldrick from the University of Colorado and contributing scientist to Japan’s Akatsuki mission to explore Venus’s atmosphere. “Meaning that its current structure does depend on the radiation from the sun. If you change that radiation then the atmosphere will eventually adjust but it’s not likely to be quick.”


The surface of Venus captured from the former Soviet Union’s Venera 13 spacecraft, which touched down in March 1982. (NASA)


Exactly what would happen to Venus’s 90 bar atmosphere in the long term is not obvious. It may be that the planet would slowly cool to more temperate conditions. Alternatively, the planet’s shiny albedo may decrease as the upper atmosphere cools. This would allow Venus to absorb a larger fraction of the radiation that reached its new orbit and help maintain the stifling surface conditions. To really cool the planet down, Venus may have to be dragged out beyond the habitable zone.

“Past about 1.3 au, carbon dioxide will begin to condense into clouds and also onto the surface as ice,” said Ramses Ramirez from the Earth-Life Sciences Institute (ELSI) in Tokyo, who specializes in modelling the edges of the habitable zone. (An “au” is an astronomical unit, which is the distance from our sun to Earth.)

Once carbon dioxide condenses, it can no longer act as a greenhouse gas and trap heat. Instead, the ice and clouds typically reflect heat away from the surface. This defines the outer edge of the classical habitable zone when the carbon dioxide should have mainly condensed out of the atmosphere at about 1.7 au. The result should be a rapid cooling for Venus. However, this outer limit for the habitable zone was calculated for an Earth-like atmosphere.

The thick atmosphere of Venus captured by the Akatsuki orbiter. (JAXA)

“Venus has other things going on in its atmosphere compared to Earth, such as sulphuric acid clouds,” noted Ramirez. “and it is much drier, so this point (where carbon dioxide condenses) may be different for Venus.”

If Venus was continually dragged outwards, even the planet’s considerable heat supply would become exhausted.

“If you flung Venus out of the solar system as a rogue planet, it would eventually cool-off!” pointed out Max Parks, a research assistant at NASA Goddard.

It seems that simply switching the orbits of the current Venus and Mars would not produce a second habitable world. But what if the two planets formed in opposite locations? Mars is unlikely to have fared any better, but would Venus have avoided forming its lead-melting atmosphere and become a second Earth?

At first glance, this seems very probable. If the Earth was pushed inwards to Venus’s orbit, then water would start to rapidly evaporate. Like carbon dioxide, water vapour is a greenhouse gas and helps trap heat. The planet’s temperature would therefore keep increasing in a runaway cycle until all water had evaporated. This “runaway greenhouse effect” is a possible history for Venus, explaining its horrifying surface conditions. If the planet had instead formed within the habitable zone, this runaway process should be avoided as it had been for the Earth.

“When I suggested this topic, I wondered whether two inhabited planets would exist (the Earth and Venus) if Mars and Venus formed in opposite locations,” Colose said. “Being at Mars’s orbit would avoid the runaway greenhouse and a Venus-sized planet wouldn’t have its atmosphere stripped as easily as Mars.”


Artist impression of a terraformed Mars. (NASA GSFC)


But discussion within the group revealed that it is very hard to offer any guarantees that a planet will end up habitable. One example of the resultant roulette game is the planet crust. The crust of Venus is a continuous lid and not series of fragmented plates as on Earth. Our plates allow a process known as plate tectonics, whereby nutrients are cycled through the Earth’s surface and mantle to help support life. Yet, it is not clear why the Earth formed this way but Venus did not.

One theory is that the warmer Venusian crust healed breaks rapidly, preventing the formation of separate plates. However, research done by Matt Weller at the University of Texas suggests that the formation of plate tectonics might be predominantly down to luck. Small, random fluctuations might send two otherwise identical planets down different evolutionary paths, with one developing plate tectonics and the other a stagnant lid. If true, even forming the Earth in exactly the same position could result in a tectonic-less planet.

A rotating globe with tectonic plate boundaries indicated as cyan lines (credit: NASA/Goddard Space Flight Center Scientific Visualization Studio).

Venus’s warmer orbit may have shortened the time period in which plate tectonics could develop, but moving the planet to Mars’s orbit offers no guarantees of a nutrient-moving crust.

Yet whether plate tectonics is definitely needed for habitability is also not known. It was pointed out during the discussion that both Mars and Venus show signs of past volcanic activity, which might be enough action to produce a habitable surface under the right conditions.

Of course, moving a planet’s orbit is beyond our technological abilities. There are other techniques that could be tried, such as an idea by Jim Green, the NASA chief scientist and Dong involving artificially shielding Mars’s atmosphere from the solar wind.

“We reached the opposite conclusion to Bruce’s paper,” Dong noted cheerfully. “That is might be possible to use technology to give Mars an atmosphere. But it is fun to hear different voices and this is the reason why science is so interesting!”



Counting Our Countless Worlds

The Milky Way has several hundred billion stars, and many scientists are now convinced it has even more planets and moons. (NASA)
The Milky Way is home to several hundred billion stars, and many scientists are now convinced it has even more planets and moons. (NASA)

Imagine counting all the people who have ever lived on Earth, well over 100 billion of them.

Then imagine counting all the planets now orbiting stars in our Milky Way galaxy , and in particular the ones that are roughly speaking Earth-sized. Not so big that the planet turns into a gas giant, and not so small that it has trouble holding onto an atmosphere.

In the wake of the explosion of discoveries about distant planets and their suns in the last two decades, we can fairly conclude that one number is substantially larger than the other.

Yes, there are many, many billions more planets in our one galaxy than people who have set foot on Earth in all human history. And yes, there are expected to be more planets in distant habitable zones as there are people alive today, a number upwards of 7 billion.

This is for sure a comparison of apples and oranges. But it not only gives a sense of just how commonplace planets are in our galaxy (and no doubt beyond), but also that the population of potentially habitable planets is enormous, too.   “Many Worlds,” indeed.


The populations of exoplanets identified so far, plotted according to the radius of the planet and how many days it takes to orbit. The circles in yellow represent planets found by Kepler, light blue by using ground-based radial velocity, and pink for transiting planets not found by Kepler, and green, purple and red other ground-based methods. (NASA Ames Research Center)
The populations of exoplanets identified so far, plotted according to the radius of the planet and how many days it takes to orbit. The circles in yellow represent planets found by Kepler, light blue by using ground-based radial velocity, and pink for transiting planets not found by Kepler, and green, purple and red other ground-based methods. (NASA Ames Research Center)

It was Ruslan Belikov, an astrophysicist at NASA’s Ames Research Center in Silicon Valley who provided this sense of scale.  The numbers are of great importance to him because he (and others) will be making recommendations about future NASA exoplanet-finding and characterization missions based on the most precise population numbers that NASA and the exoplanet community can provide.

Natalie Batalha, Mission Scientist for the Kepler Space Telescope mission and the person responsible for assessing the planet population out there, sliced it another way. When I asked her if her team and others now expect each star to have a planet orbiting it, she replied: “At least one.”


Kepler-186f was the first rocky planet to be found within the habitable zone -- the region around the host star where the temperature is right for liquid water. This planet is also very close in size to Earth. (NASA Ames/SETI Institute/JPL-Caltech)
Kepler-186f was the first rocky planet to be found within the habitable zone — the region around the host star where the temperature is right for liquid water. This planet is also very close in size to Earth. (NASA Ames/SETI Institute/JPL-Caltech)


I caught up with Belikov, Batalha and several dozen others intimately involved in cataloguing the vast menagerie of exoplanets at a “Hack Event” earlier this month at Ames. The goal of the three-day gathering was to find ways to improve the already high level of reliability and completeness regarding planets identified by Kepler.

It also provided an opportunity to learn more about how, exactly, these scientists can be so confident about the very large numbers of exoplanets and habitable zone exoplanets they describe. After all, the total number of confirmed exoplanets is a bit under 2,000 – a majority found by Kepler but hundreds of others by pioneering astronomers using ground-based telescopes and very different techniques. Kepler has another 3,000 planet candidates that scientists are in the process of analyzing and most likely confirming, but still. Four thousand is minuscule compared with two hundred billion.

Not everyone completely agrees that we’re ready to estimate such large numbers of exoplanets—suggesting that we need more data before making such important estimates — but the community consensus is that their extrapolations from current data are solid and scientific. And here is why:

The Kepler telescope looks out at a very small portion of the sky with a limited number of stars – about 190,000 of them during its four year survey. And it identifies planets based on the tiny dimming of stars when an object (almost always a planet) crosses between the star and the telescope.

An image by Carter Roberts of the Eastbay Astronomical Society in Oakland, CA, showing the Milky Way region of the sky where the Kepler spacecraft/photometer will be pointing. Each rectangle indicates the specific region of the sky covered by each CCD element of the Kepler photometer. There are a total of 42 CCD elements in pairs, each pair comprising a square. (Carter Roberts / Eastbay Astronomical Society)

By identifying those 4,000-plus confirmed and candidate planets over four years, Kepler infers the existence of many, many more. As Batalha explained, a transit of the planet is only observable when the orbit is aligned with the telescope, and the probability of that alignment is very small. Kepler scientists refer to this as a “bias” in their observations, and it is one that can be quantified. For example, the probability that an Earth-Sun twin will be aligned in a transiting geometry is just 0.5%. For every one that Kepler detects, there are 200 others that didn’t transit simply because of the orientation of their orbits.

Then there’s the question of faintness and reliability. Kepler is looking out at stars hundreds, sometimes thousands of light years away.  The more distant a star, the fainter it is and the more difficult it is to gather measurements of –and especially dips in — brightness. When it comes to potentially habitable, Earth-sized planets, Batalha said that only 10,000 to 15,000 of the stars observed are bright enough for planets to be detectable even if they do transit the disk of their host star.

Here’s why: Detecting an Earth-sized planet would be roughly equivalent to capturing the image of a gnat as it crosses a car headlight shining one mile away. For a Jupiter-size planet, the bug would grow to only the size of a large beetle.

Add this bias to the earlier one, and you can see how the numbers swell so quickly. And since Kepler’s mission has been to provide a survey of planets in one small region – and not a census – this kind of statistical extrapolation is precisely what the mission is supposed to do.

There are numerous other detecting challenges posed by the dynamics of exoplanets, stars and the great distances. But then there are also innumerable challenges associated with the workings of the 95 megapixel CCD array that is collecting light for Kepler.   “Sensitivity dropouts” caused by those cosmic rays, horizontal “rolling bands” on the CCDs caused by temperature changes in the electronics, “optical ghosts” from binary stars that create false signals of transits on nearby stars — they are some of the many instrument artifacts that can be mistaken as a drop in light coming from a planet. Kepler’s data processing pipeline, much of which has been transferred over to the NASA Ames supercomputer, has the job of sorting all this out.


After the CCDs on the Kepler telescope record the light from stars in its viewing field, the data is sent back to Earth and goes through numerous steps before possibly delivering a “Kepler object of interest,” and possibly a planet candidate. Pleiades is the Ames supercomputer. (NASA Ames)
After the CCDs on the Kepler telescope record the light from stars in its viewing field, the data is sent back to Earth and goes through numerous steps before possibly delivering a “Kepler object of interest,” and possibly a planet candidate. Pleiades is the Ames supercomputer. (NASA Ames)

Adding to the challenge, said Jon Jenkins, a Kepler co-investigator at Ames and the science lead for the pipeline development, is that the stars viewed by Kepler turned out to be themselves “noisier” than expected. Stars naturally vary in their overall brightness, and the data processing pipeline had to be upgraded to account for that changeability.  But that stellar noise has played a key role in keeping Kepler from seeing some of the small planet transits that the team hoped to detect.

What the Hack event and other parallel efforts are doing is finding ways to, as Jenkins put it, “dig into the noise…to move towards the hairy edge of what our data can show.” The final goal: “To come up with the newest, best washer we can to clean the data and come out with an improved catalog of sparkling planets.”

All the data that will come from the primary Kepler mission, which came to a halt in the summer of 2013, has been collected and analyzed already on a first round. But now the entire pipeline of data is going to be reprocessed with its many improvements so the researchers can dig deeper into data trove. Batalha said they hope to find planets – especially Earth-sized planets – this way.

Astrophysicist Natalie Batalha was the chief scientist and mission scientist for the Kepler mission. (NASA)

One of the key techniques to measure the performance of Kepler’s analysis pipeline is to inject fake transit signals into the data and see if it picks up their presence.

As Batalha explained, this provides another way to gauge the biases in the system, its efficiency at detecting the planets that it could and should see. “If we inject 100 fake things into the pipeline and find 90 of them, that’s means we’re 90 percent complete.” She said the number would then be worked into the calculations of how many planets are out there, and how many of certain sizes will be caught and missed.

So the Hack Event, which brought together astrophysicists, planetary scientists and computer hakers, was designed to come up with ways to improve Kepler’s completeness (seeing everything there to be seen) and reliability (the likelihood that the signal comes from a planet and not an instrument artifact or non-planetary phenomena in space). By computing both the completeness and reliability, scientists are confident that they can eliminate the observation biases and transform the discovery catalog into a directory of actual planets.

This is one of the key accomplishments of the Kepler mission – making it scientifically possible to say that there are billions and billions of planets out there. What’s more, the increased power of Kepler allowed for the discovery of smaller planets, which are now known to make up the bulk of the exoplanets. And while the number of Earth-sized planets detected in that habitable zone is small – around thirty – that’s still quite a remarkable feat. And remember, Kepler is looking at but one small sliver of the sky.

The twelve exoplanets detected so far closest to Earth in size, lined up with the type of stars they orbit. (NASA Ames)
The twelve exoplanets detected and confirmed so far closest to Earth in size, lined up with the type of stars they orbit. (NASA Ames)

Why does it matter how many exoplanets are out there, how many are rocky and Earth-sized, and how many within habitable zones? The last twenty years of exoplanet hunting, after all, has made clear that there are an essentially infinite number of them in the universe, and untold billions in our galaxy.

The answer lies in the insatiable human desire to know more about the world writ large, and how and why different stars have very different solar systems. But more immediately, there’s the need to know how to best design and operate future planet-finding missions. If the goal is to learn how to characterize exoplanets – identify components of their atmospheres, learn about their weather, their surfaces and maybe their cores – then scientists and engineers need to know a lot more about where planets generally, and some specifically, can be found. And those planet demographics just might open some surprising possibilities.

For instance, Belikov and his Ames colleague Eduardo Bendek have proposed a NASA “small explorer” (under $175 million) mission to launch a 30-to-45 centimeter mirror designed to look for Earth-sized planets only at our nearest stellar neighbor, Alpha Centauri. That’s as small a telescope as you can buy off-the-shelf.

Alpha Centauri is the closest star system to our Solar System at about 4.37 lightyears away. (NASA/Hubble Space Telescope)
Alpha Centauri is the closest star system to our Solar System at about 4.37 lightyears away. (NASA/Hubble Space Telescope)

Alpha Centauri is a two-star system, and until recently researchers doubted that binaries like it would have orbiting planets. But Kepler and other planet hunters have found that planets are relatively common around binaries, making Alpha Centauri a better target than earlier imagined.

To make it a truly viable project, ACESat – the Alpha Centauri Exoplanet Satellite – requires something else: a scientifically sound estimate of the likelihood that any star in our galaxy would have an Earth-sized planet in its system. Estimates so far have ranged from 10 percent to 50 percent, but Belikov said newer data is encouraging.

“If that number becomes more firm and approaches 50 percent, then an Alpha Centauri-only mission makes a great deal of sense,” he said. “For a small investment, we could have a real possibility of detecting a planet very close by.”

Intriguing, and an insight into how new space missions are designed based on the science already completed. Both NASA and the European Space Agency have plans to launch three significant exoplanet missions within the decade, and the powerful James Webb Space Telescope will launch in 2018 with some known and undoubtedly some not yet understood capabilities for exoplanet discovery. And perhaps most important, NASA is about to study how a potential mission in the 2030s could be designed with the specific purpose of directly imaging exoplanets – the gold standard for the field. All are being designed based on current exoplanet understandings, including the abundance calculations enabled by the Kepler mission’s observations.

Almost 2,000 exoplanets have now been identified, more than half by Kepler. Another 3,000 exoplanet candidates await confirmation. (NASA Ames)
Almost 2,000 exoplanets have now been detected and confirmed, more than half by Kepler. Another 3,000 exoplanet candidates await confirmation. (NASA Ames)

Future posts will dig deeper into a fair number of the subjects raised here, but for now this much is clear: Our galaxy has many billions of planets, and the process of detecting them is robust and on-going, the process of characterizing them has begun, and all the signs point towards the presence of enormous numbers of planets in habitable zones that, in the biggest picture at least, could possibly support life.


The Exoplanet Era

Many, and perhaps most stars have solar systems with numerous planets, as in this artist rendering of Kepler 11. (NASA)

Throughout the history of science, moments periodically arrive when new fields of knowledge and discovery just explode.

Cosmology was a kind of dream world until Edwin Hubble established that the universe was expanding, and doing so at an ever-faster rate. A far more vibrant and scientific discipline was born. On a more practical level, it was only three decades ago that rudimentary personal computers were still a novelty, and now computer-controlled, self-driving cars are just on the horizon. And not that long ago, genomics and the mapping of the human genome also went into hyperspeed, and turned the mysterious into the well known.

Most frequently, these bursts of scientific energy and progress are the result of technological innovation, coupled with the far-seeing (and often lonely and initially unsupported) labor and insights of men and women who are simply ahead of the curve.

We are at another of those scientific moments right now, and the subject is exoplanets – the billions (or is it billions of billions?) of planets orbiting stars other than our sun.

The 20th anniversary of the breakthrough discovery of the first exoplanet orbiting a sun, 51 Pegasi B, is being celebrated this month with appropriate fanfare. But while exoplanet discovery remains active and planet hunters increasingly skilled and inventive, it is no longer the edgiest frontier.

Now, astronomers, astrophysicists, astrobiologists, planetary scientists, climatologists, heliophysicists and many more are streaming into a field made so enticing, so seemingly fertile by that discovery of the ubiquitousness of exoplanets.

The new goal: Identifying the most compelling mysteries of some of those distant planets, and gradually but inexorably finding ever-more inventive ways to solve them. This is a thrilling task on its own, but the potential prize makes it into quite an historic quest. Because that prize is the identification of extraterrestrial life.

The presence of life beyond Earth is something that humans have dreamed about forever – with a seemingly intuitive sense that there just had to be other planets out there, and that it made equal sense that some of them supported life. Hollywood was on to this long ago, but now we have the beginning technology and fast-growing knowledge to transform that intuitive sense of life out there into a working science.

The thin gauzy rim of the planet in foreground is an illustration of its atmosphere. (NASA’s Goddard Space Flight Center)
The thin gauzy rim of the planet in foreground is an illustration of its atmosphere. (NASA’s Goddard Space Flight Center)

Already the masses and orbits of several thousand exoplanets have been measured. Some planets have been identified as rocky like Earth (as opposed to gaseous like Jupiter.) Some have been found in what the field calls “habitable zones” – regions around distant suns where liquid water could plausibly run on a surface –as it does on Earth and once did on Mars. And some exoplanets have even been determined to have specific compounds – carbon dioxide, water, methane, even oxygen – in their atmospheres.

This and more is what I will be exploring, describing, hopefully bringing to life through an on-going examination of this emerging field of science and the inventive scientists working to understand planets and solar systems many light-years away. Theirs is a daunting task for sure, and progress may be halting. But many scientists are convinced that the goal is entirely within reach – that based on discoveries already made, the essential dynamics and characteristics of very different kinds of planets and solar systems are knowable.

Thus the name of this offering: “Many Worlds.”


Artist rendering of early stages of planet formation in the swirl and debris of the disk of a new star. (NASA/JPL-Caltech)
Artist rendering of early stages of planet formation in the swirl and debris of the disk of a new star. (NASA/JPL-Caltech)

I was first introduced to, and captivated by, this cosmic search in a class for space journalists taught by scientists including Sara Seager, a dynamic young professor of physics and planetary science at M.I.T., a subsequently-selected MacArthur “genius,” and a pioneer in the field not of discovering exoplanets, but of characterizing them and their atmospheres.

And based on her theorizing and the observations of many others, she was convinced that this characterizing would lead to the discovery of very distant extraterrestrial life, or at least to the discovery of planetary signatures that make the presence of life highly probable. Just this week, she predicted the discovery could take place within a decade.

It was in 2010 that she began her book “Exoplanet Atmospheres” with the statement: “A new era in planetary science is upon us.” I would take it further: A new era has arrived in the human drive to understand the universe and our place in it.

Exoplanets and their solar systems are a magnet to young scientists, says Paul Hertz, the head of NASA’s Astrophysics Division. Almost a third of the papers presented at astronomy conferences these days involve exoplanets, he said, and “it’s hard to find scientists in our field under thirty not working on exoplanets.” Go to a major geology conference, or a planetary science meeting, and much the same will be true.

And why not? I think of this moment as akin to the time in the 17th century when early microscopes revealed a universe of life never before seen. So many new questions to ask, so many discoveries to make, so much exciting and ultimately world-changing science ahead.

But the challenge of characterizing exoplanets and some day identifying signs of life does not lend itself to the kind of solitary or small group work that characterized microbiology (think the breakthrough NASA Kepler mission and the large team needed to make it reality and to analyze its results.) Not only does it require costly observatories and telescopes and spectrometers, but it also needs the expertise that scientists from different fields can bring to the task – rather like the effort to map the human genome.

That is the organizing logic of astrobiology – the more general hunt for life elsewhere in our solar system and far beyond, alongside the search for clues into how life may have started on our planet. NASA is eager to encourage that same spirit in the more specific but nonetheless equally sprawling exploration of exoplanets, their atmospheres, their physical makeup, their climates, their suns, their neighborhoods.


The Earth alongside “Super-Earth-” sized exoplanets identified with the Kepler Space Telescope. (NASA Ames / JPL-Caltech)
The Earth alongside “Super-Earth-” sized exoplanets identified with the Kepler Space Telescope. (NASA Ames / JPL-Caltech)


The result was the creation this summer of the the Nexus for Exoplanet System Science (NExSS), a group that will be led by 17 teams of scientists from around the country already working on some aspect of the rich exoplanet opportunity. The group was selected from teams that had applied for grants from NASA’s Astrobiology Institute, an arm of its larger NASA Astrobiology Program, as well as other NASA programs in the Planetary Sciences, Astrophysics and Astronomy divisions.

Their mandate is to spark new approaches in the effort to understand exoplanets by identifying areas without consensus in the broader community, and then fostering collaborations here and abroad to address those issues.

“Many Worlds” grew out of the NExSS initiative, and will chronicle and explain the efforts of some team members as they explore how exo-plants and exo-creatures might be detected; what can be learned from afar about the surfaces and cores of exoplanets and how both play into the possibility of faraway life; the presence and dynamics of exo-weather, what we can learn about exoplanets from our own planet and solar system, and so much more.

A few of the teams are small, but many are quite large, established and mature – perhaps most especially the Virtual Planetary Laboratory at the University of Washington, and run by Victoria Meadows. Since 2001, the virtual lab has collaborated with researchers representing many disciplines, and from as many as 20 institutions, to understand what factors might best predict whether an exoplanet harbors life, using Earth as a model.

But just as I will be venturing beyond NExSS in my writing about this new era of exploration, so too will NExSS be open to the involvement of other scientists in the field. The original group has been tasked with identifying an agenda of sorts for NASA exoplanet missions and efforts ahead. But its aim is to be inclusive and its conclusions and recommendations will only be as useful and important as the exoplanet community writ large determines them to be.

The Carina Nebula, one of many regions where stars come together and planets later form made out of the surrounding dust, gas and later rock. (NASA, ESA, and the Hubble SM4 ERO Team)
The Carina Nebula, one of many regions where stars come together and planets later form made out of the surrounding dust, gas and later rock. (NASA, ESA, and the Hubble SM4 ERO Team)

This is a moment pregnant with promise. Systematically investigating exoplanets and their environs is an engine for discovery and a pathway into that largest question of whether or not we are alone in the universe.

Will scientists some day find worlds where donkeys talk and pigs can fly (as at least one “everything is possible” philosopher has posited)? Unlikely.

But just as microscopes and the scientists using them led to the science of microbiology and most of modern medicine, so too are our orbiting observatories, Earth-based telescopes and the scientists who analyze their results are regularly opening up a world of myriad and often surprising marvels.