Large Reservoir of Liquid Water Found Deep Below the Surface of Mars

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Artist impression of the Mars Express spacecraft probing the southern hemisphere of Mars, superimposed on a radar cross section of the southern polar layered deposits. The leftmost white line is the radar echo from the Martian surface, while the light blue spots are highlighted radar echoes along the bottom of the ice.  Those highlighted areas measure very high reflectivity, interpreted as being caused by the presence of water. (ESA, INAF. Graphic rendering by Davide Coero Borga )

Far beneath the frigid surface of the South Pole of Mars is probably the last place where you might expect the first large body of Martian liquid water would be found.  It’s -170 F on the surface, there are no known geothermal sources that could warm the subterranean ice to make a meltwater lake, and the liquid water is calculated to be more than a mile below the surface.

Yet signs of that liquid water are what a team of Italian scientists detected — a finding that they say strongly suggests that there are other underground lakes and streams below the surface of Mars.  In a Science journal article released today, the scientists described the subterranean lake they found as being about 20 kilometers in diameter.

The detection adds significantly to the long-studied and long-debated question of how much surface water was once on Mars, a subject that has major implications for the question of whether life ever existed on the planet.

Finding the subterranean lake points to not only a wetter early Mars, said co-author Enrico Flamini of the Italian space agency, but also to a Mars that had a water cycle that collected and delivered the liquid water.  That would mean the presence of clouds, rain, evaporation, rivers, lakes and water to seep through surface cracks and pool underground.

Scientists have found many fossil waterways on Mars, minerals that can only be formed in the presence of water, and what might be the site of an ancient ocean.

But in terms of liquid water now on the planet, the record is thin.  Drops of water collected on the leg of NASA’s Phoenix Lander after it touched down in 2008, and what some have described as briny water appears to be flowing down some steep slopes in summertime.  Called recurrent slope lineae or RSLs, they appear at numerous locations when the temperatures rise and disappear when they drop.

This lake is different, however, and its detection is a major step forward in understanding the history of Mars.

Color photo mosaic of a portion of Planum Australe on Mars.  The subsurface reflective echo power is color coded and deep blue corresponds to the strongest reflections, which are interpreted as being caused by the presence of water. (USGS Astrogeology Science Center, Arizona State University, INAF)

The discovery was made analyzing echoes captured by the the radar instruments on the European Space Agency’s Mars Express, a satellite orbiting the planet since 2002.  The data for this discovery was collected from observation made between 2012 and 2015.

 

A schematic of how scientists used radar to find what they interpret to be liquid water beneath the surface of Mars. (ESA)

Antarctic researchers have long used radar on aircraft to search for lakes beneath the thick glaciers and ice layers,  and have found several hundred.  The largest is Lake Vostok, which is the sixth largest lake on Earth in terms of volume of water.  And it is two miles below the coldest spot on Earth.

So looking for a liquid lake below the southern pole of Mars wasn’t so peculiar after all.  In fact, lead author Roberto Orosei of the Institute of Radioastronomy of Bologna, Italy said that it was the ability to detect subsurface water beneath the ice of Antarctica and Greenland that helped inspire the team to look at Mars.

There are a number of ways to keep water liquid in the deep subsurface even when it is surrounded by ice.  As described by the Italian team and an accompanying Science Perspective article by Anja Diez of the Norwegian Polar Institute, the enormous pressure of the ice lowers the freezing point of water substantially.

Added to that pressure on Mars is the known presence of many salts, that the authors propose mix with the water to form a brine that lowers the freezing point further.

So the conditions are present for additional lakes and streams on Mars.  And according to Flamini, solar system exploration manager for the Italian space agency, the team is confident there are more and some of them larger than the one detected.  Finding them, however, is a difficult process and may be beyond the capabilities of the radar equipment now orbiting Mars.

 

Subsurface lakes and rivers in Antarctica. Now at least one similar lake has been found under the southern polar region of Mars. (NASA/JPL)

The view that subsurface water is present on Mars is hardly new.  Stephen Clifford, for many years a staff scientist at the Lunar and Planetary Institute, even wrote in 1987 that there could be liquid water at the base of the Martian poles due to the kind of high pressure environments he had studied in Greenland and Antarctica.

So you can imagine how gratifying it might be to learn, as he put it “of some evidence that shows that early theoretical work has some actual connection to reality.”

He considers the new findings to be “persuasive, but not definitive” — needing confirmation with other instruments.

Clifford’s wait has been long, indeed.  Many observations by teams using myriad instruments over the years did not produce the results of the Italian team.

Their discovery of liquid water is based on receiving particularly strong radar echoes from the base of the southern polar ice — echoes consistent with the higher radar reflectivity of water (as opposed to ice or rock.)

After analyzing the data in some novels ways and going through the many possible explanations other than the presence of a lake, Orosei said that none fit the results they had.  The explanation, then, was clear:  “We have to conclude there is liquid water on Mars.”

The depth of the lake — the distance from top to bottom — was impossible to measure, though the team concluded it was at least one meter and perhaps in the tens of meters.

Might the lake be a habitable?  Orosei said that because of the high salt levels “this is not a very pleasant environment for life.”

But who knows?  As he pointed out, Lake Vostok and other subglacial Antarctic lake, are known to be home to single-cell organisms that not only survive in their very salty world, but use the salt as part of their essential metabolism.

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Mars Water Story Gets Ever More Interesting

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Enchanced-color traverse section of Martian icy scarps in late spring to early summer. Arrows indicate locations where relatively blue material is particularly close to the surface. Image taken by HiRISE camera on Mars Reconnaissance Orbiter. (NASA/JPL/UNIVERSITY OF ARIZONA/USGS )

Huge escarpments of quite pure water ice have been found in the Southern Highlands of Mars — accessible enough that astronauts might some day be able to turn the ice into water, hydrogen and oxygen.

Some of these deposits are more than 100 meters thick and begin only a meter or two below the surface.

These are among the conclusion from a new paper in the journal Science that describes these previously unknown water ice reserves.  While Mars scientists have long theorized the presence of subsurface ice under one-third of the planet, and even exposed bits of it with the Phoenix lander, the consensus view was that Martian ice was generally cemented with soil to form a kind of permafrost.

But the “scarp” ice described by Colin Dundas of the U.S. Geological Survey and colleagues is largely water ice without much other material.  This relative purity, along with its accessibility, would make the ice potentially far more useful to future astronauts.

“The ice exposed by the scarps likely originated as snow that transformed into massive ice sheets, now preserved beneath less than 1 to 2 meters of dry and ice-cemented dust or regolith,” the authors write. The shallow depths, the write “make the ice sheets potentially accessible to future exploration.”

The bright red regions contain water ice, as determined by measurements by the High-Resolution Imaging Science Experiment (HiRISE) on NASA’s Mars Reconnaissance Oribter. (NASA)

The importance is clear:  These sites are “very exciting” for potential human bases as well, says Angel Abbud-Madrid, director of the Center for Space Resources at the Colorado School of Mines in Golden, who led a recent NASA study exploring potential landing sites for astronauts.

Water is a crucial resource for astronauts, because it could be combined with carbon dioxide, the main ingredient in Mars’s atmosphere, to create oxygen to breathe and methane, a rocket propellant. And although researchers suspected the subsurface glaciers existed, they would only be a useful resource if they were no more than a few meters below the surface. The ice cliffs promise abundant, accessible ice, Abbud-Madrid told Science Magazine.

While the discovery adds to the view that Mars is neither bone-dry now nor was earlier in its history, it does not necessarily add to the question of where all the Martian water has gone or how much was originally there.

That’s because the paper describes the huge ice deposits as the result of snowfall over more recent eons that was packed into its current form, rather than water that might have been present during the warmer wetter periods of Mars history. With this in mind, Dundas said in an email that his team’s work does not add to what is known about the early Mars water budget.

As for the age of the water ice, he said “we can’t put an accurate number on it at this time, but the icy units are lightly cratered. Others in the community have proposed snowfall during periods of high axial tilt within the last few million years.”

So the ice is relatively young. But that doesn’t mean it has no story to tell.  Exposed ice, like exposed rock, always has a story to tell.

“We expect the vertical structure of Martian ice-rich deposits to preserve a record of ice deposition and past climate,” the authors write.

The eight scarps studied were steep and faced the poles. All were in the mid-latitudes, and therefore far from the polar ice sheets.

The lander Phoenix dug into the soil of the northern polar region and found cemented ice as well as pure ice several inches down. (NASA)

NASA has long had a motto for exploring Mars and other sites beyond Earth of “follow the water.”  That has been expanded to “follow the carbon” and “follow the organics,” but the water is still a guidepost of sorts of where life, or its remnants, might be found.  Now with these large and seemingly accessible deposits of water ice, “follow the water” takes on a new meaning for potential future astronauts in search of essential chemical components.

Still, the issue of just how much water there is and has been on Mars is a central to piecing together the planet’s history and how much of the planet might have one day been eminently habitable.

The last decade of Mars exploration and observation has led most Mars scientists to conclude that the planet once had rivers, lakes and possibly a northern ocean. That water is almost entirely (or perhaps entirely) gone from the surface now, and understanding where it went is certainly key to understanding the history of the planet.

While much no doubt escaped to space after the early protective Mars magnetic field and atmosphere largely disappeared, researchers say there remains a lot of Mars water to be accounted for.

An article in the journal Nature last month reported the possibility of large amounts of water mixing with Martian basalts long ago and forming a broadly water-rich crust.  The authors of that paper, led by Jon Wade of Oxford’s Department of Earth Sciences, described modeling that found water on early Mars could be absorbed into spongy rock at a far greater rate than on Earth.

In an accompanying review, geochemist and cosmochemist Tomohiro Usui of the Earth-Life Science Institute in Tokyo, supported the notion, and added another possibility that he has published on as well.

“Ground ice might also account for the missing water reservoir on Mars,” he wrote. “Subsurface radar-sounder measurements have detected an anomaly in an electrical property of rocks in the planet’s northern hemisphere, which implies that massive ice deposits are embedded among or between layers of sediment and volcanic materials at a depth of 60–80 m.”

Usui wrote that the ground-ice model has also been proposed based of analyses of hydrogen isotopes in Martian meteorites and of the shapes and characteristics of craters. Indeed, the crater study indicated that the subsurface water ice has a volume comparable to the size of the ancient oceans.

Where did the large amounts of water once present on Mars go. Some clearly was lost to the atmosphere, but some researchers are convinced that much is underground as ice or incorporated into minerals. (Nature)

 

Dundas agreed that the new paper was a continuation of earlier work, rather than something entirely new. “We’ve known for some time that there is shallow ground ice within a meter of the surface, and there have been recent radar detections of ice sheets tens of meters thick,” he said in his email. “What our work does is provide some three-dimensional information at high resolution that helps tie things together.”

Dundas et al reported that the fractures and steep angles found indicate that the ice is cohesive and strong. What’s more, bands and variations in color suggest that the ice contains distinct layers, which could be used to understand changes in Mars’ climate over time.

Because the ice is only visible where surface soil has been removed, the paper says it is likely that ice near the surface is more extensive than detected in this study.

And that could be very important to astronauts on future missions to Mars.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

In Search of Panspermia (and Life on Icy Moons)

Facebooktwittergoogle_plusredditpinterestlinkedinmail

 

Sometimes personal affairs intervene for all of us, and they have now for your Many Worlds writer and his elderly father.  But rather than remain off the radar screen, I wanted to repost this column which has a new import. 

It turns out that versions of the instrument described below — a miniature gene sequencing device produced by Oxford Nanopore — have been put forward as the kind of technology that could detect life in the plume of Enceladus, or perhaps on Europa or Titan. 

Major figures in the astrobiology field, including Steve Benner of the Foundation for Applied Molecular Evolution (FfAME) and Chris McKay of NASA Ames Research Center see this kind of detection of the basic polymer backbone of RNA or DNA life as a potentially significant way forward.  Three different “Icy Moon” teams are vying for a NASA New Frontiers mission to Enceladus and Titan, and this kind of technology plays a role in at least one of the proposed missions.

 

Early Earth, like early Mars and no doubt many other planets, was bombarded by meteorites and comets. Could they have arrived "living" microbes inside them?
Early Earth, like early Mars and no doubt many other planets, was bombarded by meteorites and comets. Could they have arrived “living” microbes inside them?

When scientists approach the question of how life began on Earth, or elsewhere, their efforts generally involve attempts to understand how non-biological molecules bonded, became increasingly complex, and eventually reached the point where they could replicate or could use sources of energy to make things happen.  Ultimately, of course, life needed both.

Researchers have been working for some time to understand this very long and winding process, and some have sought to make synthetic life out of selected components and energy.  Some startling progress has been made in both of these endeavors, but many unexplained mysteries remain at the heart of the processes.  And nobody is expecting the origin of life on Earth (or elsewhere) to be fully understood anytime soon.

To further complicate the picture, the history of early Earth is one of extreme heat caused by meteorite bombardment and, most important, the enormous impact some 4.5 billion years of the Mars-sized planet that became our moon.  As a result, many early Earth researchers think the planet was uninhabitable until about 4 billion years ago.

Yet some argue that signs of Earth life 3.8 billion years ago have been detected in the rock record, and lifeforms were certainly present 3.5 billion years ago.  Considering the painfully slow pace of early evolution — the planet, after all, supported only single-cell life for several billion years before multicellular life emerged — some

dna animation. the big 300
A DNA helix animation. Life on Earth is based on DNA, and some researchers have been working on ways to determine whether DNA life also exists on Mars or elsewhere in the solar system.

researchers are skeptical about the likelihood of DNA-based life evolving in the relatively short window between when Earth became cool enough to support life and the earliest evidence of actual life.

So what else, from a scientific as opposed to a religious perspective, might have set into motion the process that made life out of non-life?

One long considered yet generally quickly dismissed answer is getting new attention and a little more respect.  It invokes panspermia, the sharing of life via meteorites from one planet to another, or delivery by comet.

In this context, the question generally raised is whether Earth might have been seeded by early Martian life (if it existed).  Mars, it is becoming increasingly accepted, was probably more habitable in its early period than Earth.  But panspermia inherently could go the other way as well, or possibly even between solar systems.

A team of prominent scientists at MIT and Harvard are sufficiently convinced in the plausibility of panspermia that they have spent a decade, and a fair amount of NASA and other funding, to design and produce an instrument that can be sent to Mars and potentially detect DNA or more primitive RNA.

In other words, life not only similar to that on Earth, but actually delivered long ago from Earth. It’s called the The Search for Extraterrestrial Genomes, or SETG.

Gary Ruvkun is one of those researchers, a pioneering molecular biologist at Massachusetts General Hospital and professor of genetics at Harvard Medical School.

I heard him speaking recently at a Space Sciences Board workshop on biosignatures, where he described the real (if slim) possibility that DNA or RNA-based life exists now on Mars, and the instrument that the SETG group is developing to detect it should it be there.

Did meteorites spread life between planets, and maybe even solar systems? Some pretty distinguished people think that it may well have happened. This illustration is an artist's rendering of the comet Siding Spring approaching Mars in 2015.
Did meteorites spread life between planets, and maybe even solar systems? Some pretty distinguished people think that it may well have happened. This illustration is an artist’s rendering of the comet Siding Spring approaching Mars in 2015. (NASA)

The logic of panspermia — or perhaps “dispermia” if between but two planets — is pretty straight-forward, though with some significant question marks.  Both Earth and Mars, it is well known, were pummeled by incoming meteorites in their earlier epochs, and those impacts are known to have sufficient force to send rock from the crash site into orbit.

Mars meteorites have been found on Earth, and Earth meteorites no doubt have landed on Mars.  Ruvkun said that recent work on the capacity of dormant microbes to survive the long, frigid and irradiated trip from planet to planet has been increasingly supportive.

“Earth is filled with life in every nook and cranny, and that life is wildly diverse,” he told the workshop.  “So if you’re looking for life on Mars, surely the first thing to look for is life like we find on Earth.  Frankly, it would be kind of stupid not to.”

Gary Ruvkun, professor of genetics at MIT, and a principal investigator for The Search for Extraterrestrial Genomes.
Gary Ruvkun, professor of genetics at MIT, and a principal investigator for The Search for Extraterrestrial Genomes. (Kris Snibbe/Harvard News Office)

The instrument being developed by the group, which is led by Ruvkun and Maria Zuber, MIT vice president for research and head of the Department of Earth, Atmospheric and Planetary Sciences.  It would potentially be part of a lander or rover science package and would search DNA or RNA, using techniques based on the exploding knowledge of earthly genomics.

The job is made easier, Ruvkun said, by the fact that the basic structure of DNA is the same throughout biology.  What’s more, he said, there about 400 specific genes sequences “that make up the core of biology — they’re found in everything from extremeophiles and bacteria to worms and humans.”

Those ubiquitous gene sequences, he said, were present more than 3 billion years ago in seemingly primitive lifeforms that were, in fact, not primitive at all.  Rather, they had perfected some genetic pathways that were so good that they still used by most everything alive today.

And how was it that these sophisticated life processes emerged not all that long (in astronomical or geological terms) after Earth cooled enough to be habitable?  “Either life developed here super-fast or it came full-on as DNA life from afar,” Ruvkun said.  It’s pretty clear which option he supports.

Ruvkun said that the rest of the SETG team sees that kind of inter-planetary transfer — to Mars and from Mars — as entirely plausible, and that he takes panspermia a step forward. He thinks it’s possible, though certainly not likely nor remotely provable today, that life has been around in the cosmos for as long as 10 billion years, jumping from one solar system and planet to another.  Not likely, but at idea worth entertaining.

A state-of-the-art instrument for reading DNA sequences in the field. The MIT/Harvard team is working with the company that makes it, and several others, on refining how it would do that kind of sequencing on Mars. (Oxford Nanopore)
A state-of-the-art instrument for reading DNA sequences in the field. The MIT/Harvard team is working with the company that makes it, and several others, on refining how it would do that kind of sequencing of live DNA on Mars. The extremely high-tech thumb drive weighs about 3 ounces. (Oxford Nanopore)

Maria Zuber of MIT, who was the PI for the recent NASA GRAIL mission to the moon, has been part of the SETG team since near its inception, and MIT research scientist Christopher Carr is the project manager.  Zuber said it was a rather low-profile effort at the start, but over the years has attracted many students and has won NASA funding three times including the currently running Maturation of Instruments for Solar System Exploration (MatISSE) grant.

“I have made my career out of doing simple experiments. if want to look for life beyond earth helps to know what you’re looking for.

“We happen to know what life on Earth is like– DNA based or possibly RNA-based as Gary is looking for as well.  The point is that we know what to look for.  There are so many possibilities of what life beyond Earth could be like that we might as well test the hypothesis that it, also, is DNA based.  It’s a low probability result, but potentially very high value.”

DNA sequencing instruments like the one her team is developing are taken to the field regularly by thousands of researchers, including some working with with SETG.  The technology has advanced so quickly that they can pick up a sample in a marsh or desert or any extreme locale and on the spot determine what DNA is present.  That’s quite a change from the pain-staking sequencing done painstakingly by graduate students not that long ago.

Panspermia, Zuber acknowledged, is a rather improbable idea. But when nature is concerned, she said  “I’m reticent to say anything is impossible. After all, the universe is made up of the same elements as those on Earth, and so there’s a basic commonality.”

Zuber said the instrument was not ready to compete for a spot on the 2020 mission to Mars, but she expects to have a sufficiently developed one ready to compete for a spot on the next Mars mission.  Or perhaps on missions to Europa or the plumes of Enceladus.

Maria Zuber, MIT vice president for research, and the principal investigator for the SETG project. (MIT)
Maria Zuber, MIT vice president for research, and the principal investigator for the SETG project. (MIT)

The possibility of life skipping from planet to planet clearly fascinates both scientists and the public.  You may recall the excitement in the mid 1990s over the Martian meteorite ALH84001, which NASA researchers concluded contained remnants of Martian life.  (That claim has since been largely refuted.)

Of the roughly 61,000 meteorites found on Earth, only 134 were deemed to be Martian as of two years ago.  But how many have sunk into oceans or lakes, or been lost in the omnipresence of life on Earth?  Not surprisingly, the two spots that have yielded the most meteorites from Mars are Antarctica and the deserts of north Africa.

And when thinking of panspermia, it’s worthwhile to consider the enormous amount of money and time put into keeping Earthly microbes from inadvertently hitching a ride to Mars or other planets and moons as part of a NASA mission.

The NASA office of planetary protection has the goal of ensuring, as much as possible, that other celestial bodies don’t get contaminated with our biology.  Inherent in that concern is the conclusion that our microbes could survive in deep space, could survive the scalding entry to another planet, and could possibly survive on the planet’s surface today. In other words, that panspermia (or dispermia) is in some circumstances possible.

Testing whether a spacecraft has brought Earth life to Mars is actually another role that the SETG instrument could play.  If a sample tested on Mars comes back with a DNA signature result exactly like one on Earth–rather one that might have come initially from Earth and then evolved over billions of years– then scientists will know that particular bit of biology was indeed a stowaway from Earth.

Rather like how a very hardy microbe inside a meteorite might have possibly traveled long ago.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Planetary Protection is a “Wicked” Problem

Facebooktwittergoogle_plusredditpinterestlinkedinmail
The Viking landers were baked for 30 hours after assembly, a dry heat sterilization that is considered the gold standard for planetary protection.  Before the baking, the landers were given a preliminary cleaning to reduce the number of potential microbial spores.  The levels achieved with that preliminary cleaning are similar to what is now required for a mission to Mars unless the destination is an area known to be suitable for Martian life.  In that case, a sterilizing equivalent to the Viking baking is required.  (NASA)

The only time that a formally designated NASA “life detection” mission was flown to another planet or moon was when the two Viking landers headed to Mars forty years ago.

The odds of finding some kind of Martian life seemed so promising at the time that there was little dispute about how much energy, money and care should be allocated to making sure the capsule would not be carrying any Earth life to the planet.  And so after the two landers had been assembled, they were baked at more than 250 °F for three days to sterilize any parts that would come into contact with Mars.

Although the two landers successfully touched down on the Martian surface and did some impressive science, the life detection portion of the mission was something of a fiasco — with conflict, controversy and ultimately quite a bit of confusion.

Clearly, scientists did not yet know enough about how to search for life beyond Earth and the confounding results pretty much eliminated life-detection from NASA’s missions for decades.

But scientific and technological advances of the last ten years have put life detection squarely back on the agenda — in terms of future searches for fossil biosignatures on Mars and for potential life surviving in the oceans of Europa and Enceladus.  What’s more, both NASA and private space companies talk seriously of sending humans to Mars in the not-too-distant future.

With so many missions being planned, developed and proposed for solar system planets and moons, the issue of planetary protection has also gained a higher profile.  It seems to have become more contentious and to some seems far less straight-forward as it used to be.

A broad consensus appears to remain that bringing Earth life to another planet or moon, especially if it is potentially habitable, is a real possibility that is both scientifically and ethically fraught. But there are rumblings about just how much time, money and attention needs to be brought to satisfying the requirements of “planetary protection.”

In fact, it has become a sufficiently significant question that the first plenary session of the recent Astrobiology Science Conference in Mesa, Arizona was dedicated to it.  The issue, which was taken up in later technical sessions as well, was how to assess and weigh the risks of bringing Earth life to other bodies versus the benefits of potentially sending out more missions, more often and more cheaply.

It is not a simple problem, explained Andrew Maynard, director of the Risk Innovation Lab at Arizona State University.  Indeed, he told the audience of scientists that it was a “wicked problem,” a broadly used terms for issues that are especially complex and involve numerous issues and players.

 

A primary barrier to keeping microbes off spacecraft and instruments going to space is to build them in clean rooms, such as this one at JPL.  These large rooms with filtered air do help lower the count of microbes on surfaces, but the bacteria are everywhere and further steps are essential.  (NASA/JPL-Caltech)

As he later elaborated to me, other “wicked” risk-benefit problems include gene editing and autonomous driving — both filled with great potential and serious potential downsides.  Like travel to other planets and moons.

“This is subjective,” Maynard said, “but I’d put planetary protection on the more wicked end of the spectrum. It combines individual priorities and ethics  — what people and groups deeply believe is right — with huge uncertainties.  That makes it something never really experienced before and so escalates all factors of wickedness.”

Those groups include scientists (who very much don’t want Mars or another potentially habitable place to be contaminated with Earth life before they can get there), to advocates of greater space exploration (who worry that planetary protection will slow or eliminate some missions they very much want to proceed), to NASA mission managers (worried about delays and costs associated with planetary protections surprises.)

And then there’s the general public which might (or might not) have entirely different ethical concerns about the potential for contaminating other planets and moons with Earth life.

No wonder the problem is deemed wicked.

We’ll get into the pros and cons, but first some background:

I asked NASA’s Planetary Protection officer, Catharine Conley, whether Earth life has been transported to its most likely solar system destination, Mars.

Her reply:  “There are definitely Earth organisms that we’ve brought to Mars and are still alive on the spacecraft.”

Catharine “Cassie” Conley has been NASA’s Planetary Protection officer since 2006. There is only one other full-time official in the world with the same responsibilities, and he works for the European Space Agency. (NASA/W. Hrybyk)

She said it is quite possible that some of those organisms were brushed off the vehicles or otherwise were shed and fell to the surface. Because of the strong ultraviolet radiation and the Earth life-destroying chemical makeup of the soil, however, it’s unlikely the organisms could last for long, and equally unlikely that any would have made it below the surface.  Nonetheless, it is sobering to hear that Earth life has already made it to Mars.

Related to this reality is the understanding that Earth life, in the form of bacteria, algae and fungi and their spores, can be extraordinarily resilient.  Organisms have been discovered that can survive unimagined extremes of heat and cold, can withstand radiation that would kill us, and can survive as dormant spores for tens of thousands of years.

What’s more, Mars scientists now know that the planet was once much warmer and wetter, and that ice underlies substantial portions of the planet. There are even signs today of seasonal runs of what some scientists argue is very briny surface water.

So the risk of Earth life surviving a ride to another planet or moon is probably greater than imagined earlier, and the possibility of that Earth life potentially surviving and spreading on a distant surface (think the oceans of Europa and Enceladus, or maybe a briny, moist hideaway on Mars) is arguably greater too.  From a planetary protection perspective, all of this is worrisome.

The logic of planetary protection is, like almost everything involved with the subject, based on probabilities.  Discussed as far back as the 1950s and formalized in the 1967 Outer Space Treaty, the standard agreed on is to take steps that ensure there is less than a 1 in 10,000 chance of a spaceship or lander or instrument from Earth bringing life to another body.

This figure takes into account the number of microorganisms on the spacecraft, the probability of growth on the planet or moon where the mission is headed, and a series of potential sanitizing to sterilizing procedures that can be used.  A formula for assessing the risk of a mission for planetary protection purposes was worked out in 1965 by Carl Sagan, along with Harvard theoretical physicist Sidney Coleman.

Deinococcus radiodurans is an extremophilic bacterium, one of the most radiation-resistant organisms known. It can survive cold, dehydration, vacuum, and acid, and is therefore known as a polyextremophile and is considered perhaps the world’s toughest bacterium. It can withstand a radiation dose 1,000 times stronger than what would kill a person.

A lot has been learned since that time, and some in the field say it’s time to re-address the basics of planetary protection.  They argue, for instance, that since we now know that Earth life can (theoretically, at least) be carried inside a meteorite from our planet to Mars, then Earth life may have long been on Mars — if it is robust enough to survive when it lands.

In addition, a great deal more is known about how to sanitize a space vehicle without baking it entirely — a step that is both very costly and could prove deadly to the more sophisticated capsules and instruments.  And more is known about the punishing environment on the surface of Mars and elsewhere.

People ranging from Mars Society founder Robert Zubrin to Cornell University Visiting Scientist Alberto G. Fairén in Nature Geoscience have argued — and sometimes railed — against planetary protection requirements. NASA mission managers have often voiced their concerns as well.  The regulations, some say, slow the pace of exploration and science to avoid a vanishingly small risk.

Brent Sherwood, planetary mission formulation manager for JPL, is currently overseeing two proposed projects for New Frontiers missions.  One is to search for signs of life on Saturn’s moon Enceladus and the other for habitability on the moon Titan. (Brent Sherwood)

Brent Sherwood, program manager for solar system mission formulation at JPL, spoke at AbSciCon about what he sees as the need for a review and possibly reassessment of the planetary protection rules and regulations.  As someone who helps scientists put together proposals for NASA missions in the solar system, he has practical and long considered views about planetary protection.

He and his co-authors argue that the broad conversation that needs to take place should include scientists, ethicists, managers, and policy makers; and especially should include the generations that will actually implement and live with the consequences of these missions.

In the abstract for his talk, Sherwood wrote:

“The (1 chance in 10,000) requirement may not be as logically sound or deserving of perpetuation as generally assumed.  What status should this requirement have within an ethical decision-making process? Do we need a meta-ethical discussion about absolute values, rather than an arbitrary number that purports to govern the absolute necessity of preserving scientific discovery or protecting alien life?”

As he  later he told me: “I’m recommending that we be proactive and engage the broadest possible range of stakeholder communities…. With these big, hairy risk problems, everything is probabilistic and open to argument.  People are bad at thinking of very small and very big numbers, and the same for risks.  They tend to substitute opinion for fact.”

Sherwood is no foe of planetary protection.  But he said planetary protection is a “foundational” part of the space program, and he wants to make sure it is properly adapted for the new space era we are entering.

Elon Musk of SpaceX, Jeff Bezos of Blue Origins and NASA have all talked about potentially sending astronauts to Mars or establishing a colony on Mars in the decades ahead.  Many obstacles remain, but planning is underway. (Bryan Versteeg/Spacehabs.com)

Planetary protection officer Conley contends that regular reviews are already built into the system.  She told me that every mission gets a thorough planetary protection assessment early in the process, and that there is no one-size-fits-all approach.  Rather, the risks and architecture of the missions are studied within the context of the prevailing rules.

In addition, she said, the group that oversees planetary protection internationally — the Committee on Space Research (COSPAR) — meets every two years and its Panel on Planetary Protection takes up general topics and welcomes input from whomever might want to raise issues large or small.

“You hear it said that there are protected areas on Mars or Europa where missions can’t go, but that’s not the case,” she said.  “These are sensitive areas where life just might be present now or was present in the past.  If that’s the case, then the capsule or lander or rover has to be sterilized to the level of the Viking missions.”

She said that she understood that today’s spacecraft are different from Viking, which was designed and built from scratch with planetary protection in mind.  Today, JPL and other mission builders get some of their parts “off the shelf” in an effort to make space exploration less expensive.

“We do have to balance the goals of exploration and space science with making sure that Earth life does not take hold.  We also have to be aware that taxpayer money is being spent.  But if a mission sent out returns a signal of life, what have we achieved if it turns out to be life we brought there?

“I see planetary protection as a great success story.  People identified a potential contamination problem back in the ’50s, put regulations into place, and have succeeded in avoiding the problem.  This kind of global cooperation that leads to the preventing of a potentially major problem just doesn’t happen that often.”

The global cooperation has been robust, Conley said, despite the fact that only NASA and the European Space Agency have a full-time planetary protection officer.  She cited the planning for the joint Russian-Chinese mission to the Martian moon Phobos as an example of other nations agreeing to very high standards.  She and her European Space Agency (ESA) counterpart traveled twice to Moscow to discuss planetary protection steps being taken.

Andrew Maynard is the director of Arizona State University’s Risk Innovation Lab and is a professor in School for the Future of Innovation in Society.  (ASU.)

So far, she said private space companies have been attentive to planetary protection as well.  Some of the commercial space activity in the future involves efforts to mine on asteroids, and Conley said there is no planetary protection issues involved.  The same with mining on our moon.

But should the day arrive that private companies such as SpaceX and Blue Origin seriously propose a human mission to Mars — as they have said they plan to — Conley said they would have the same obligations as any NASA mission.  The US has not yet determined how to ensure that compliance, she said, but companies already would need Federal Aviation Administration approval for a launch, and planetary protection is part of that.

Risk innovation expert Maynard, however, was not so sure about those protections.  He said he could imagine a situation where Elon Musk of SpaceX or Jeff Bezos of Blue Origin or any other space entrepreneur around the world would decide to move their launch to a nation that would be willing to provide the service without intensive planetary protection oversight.

“The risk of this may be small, but this is all about the potentially outsize consequences of small risks,” he said.

Maynard said that was hardly a likely scenario — and that commercial space pioneers so far have been supportive of planetary protection guidelines — but that he was well aware of the displeasure among some mission managers and participating scientists about planetary protection requirements.

Given all this, it’s easy to see how and why planetary protection advocates might feel that the floodgates are being tested, and why space explorers looking forward to a time when Mars and other bodies might be visited by astronauts and later potentially colonized are concerned about potential obstacles to their visions.

An artist’s rendering of a sample return from Mars.  Both the 2020 NASA Mars mission and the ESA-Russian mission are designed to identify and cache intriguing rocks for delivery to Earth in the years ahead. (Wickman Spacecraft & Propulsion)

This column has addressed the issue of “forward contamination” — how to prevent Earth life from being carried to another potentially habitable solar system body and surviving there.  But there is another planetary protection worry and that involves “backward contamination” — how to handle the return of potentially living extraterrestrial organisms to Earth.

That will be the subject of a later column, but suffice it to say it is very much on the global space agenda, too.

The Apollo astronauts famously brought back pounds of moon rocks, and grains of asteroid and comet dust have also been retrieved and delivered.  A sample return mission by the Russian and Chinese space agencies was designed to return rock or grain samples from the Martian moon Phobos earlier this decade, but the spacecraft did not make it beyond low Earth orbit.

However, the future will see many more sample return attempts.  The Japanese space agency JAXA launched a mission to the asteroid 162173 Ryugu in 2014 (Hayabusa 2) and it will arrive there next year.  The plan is to collect rock and dust samples and bring them back to Earth.  NASA’s OSIRIS-REx is also making its way to an asteroid, 101955 Bennu, with the goal of collecting a sample as well for return to Earth.

And in 2020 both NASA and ESA (with Russian collaboration) will launch spacecraft for Mars with the intention of preparing for future sample returns.  Sample return is a very high priority in the Mars and space science communities, and many consider it essential for determining whether there has ever been life on Mars.

So the “wicked” challenges of planetary protection are only going to mount in the years ahead.

 

 

 

 

 

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

How to Give Mars an Atmosphere, Maybe

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Many Worlds site has been down for almost two weeks following the crash of the server used to publish it.  We never expected it would take quite this long to return to service, but now we are back with a column today and another one for early next week.

An artist rendering of what Mars might look like over time if efforts were made to give it an artificial magnetic field to then enrich its atmosphere and made it more hospitable to human explorers and scientists. (NASA)

Earth is most fortunate to have vast webs of magnetic fields surrounding it. Without them, much of our atmosphere would have been gradually torn away by powerful solar winds long ago, making it unlikely that anything like us would be here.

Scientists know that Mars once supported prominent magnetic fields as well, most likely in the early period of its history when the planet was consequently warmer and much wetter. Very little of them is left, and the planet is frigid and desiccated.

These understandings lead to an interesting question: if Mars had a functioning magnetosphere to protect it from those solar winds, could it once again develop a thicker atmosphere, warmer climate and liquid surface water?

James Green, director of NASA’s Planetary Science Division, thinks it could. And perhaps with our help, such changes could occur within a human, rather than an astronomical, time frame.

In a talk at the NASA Planetary Science Vision 2050 Workshop at the agency’s headquarters, Green presented simulations, models, and early thinking about how a Martian magnetic field might be re-constituted and the how the climate on Mars could then become more friendly for human exploration and perhaps communities.

It consisted of creating a “magnetic shield” to protect the planet from those high-energy solar particles. The shield structure would consist of a large dipole—a closed electric circuit powerful enough to generate an artificial magnetic field.

Simulations showed that a shield of this sort would leave Mars in the relatively protected magnetotail of the magnetic field created by the object. A potential result: an end to largescale stripping of the Martian atmosphere by the solar wind, and a significant change in climate.

“The solar sytstem is ours, let’s take it,” Green told the workshop. “And that, of course, includes Mars. But for humans to be able to explore Mars, together with us doing science, we need a better environment.”

 

An artificial magnetosphere of sufficient size generated at L1 – a point where the gravitational pull of Mars and the sun are at a rough equilibrium — allows Mars to be well protected by what is known as the magnetotail. The L1 point for Mars is about 673,920 miles (or 320 Mars radii) away from the planet. In this image, Green’s team simulated the passage of a hypothetical extreme Interplanetary Coronal Mass Ejection at Mars. By staying inside the magnetotail of the artificial magnetosphere, the Martian atmosphere lost an order of magnitude less material than it would have otherwise. (J. Green)

Is this “terraforming,” the process by which humans make Mars more suitable for human habitation? That’s an intriguing but controversial idea that has been around for decades, and Green was wary of embracing it fully.

“My understanding of terraforming is the deliberate addition, by humans, of directly adding gases to the atmosphere on a planetary scale,” he wrote in an email.

“I may be splitting hairs here, but nothing is introduced to the atmosphere in my simulations that Mars doesn’t create itself. In effect, this concept simply accelerates a natural process that would most likely occur over a much longer period of time.”

What he is referring to here is that many experts believe Mars will be a lot warmer in the future, and will have a much thicker atmosphere, whatever humans do. On its own, however, the process will take a very long time.

To explain further, first a little Mars history.

Long ago, more than 3.5 billion years in the past, Mars had a much thicker atmosphere that kept the surface temperatures moderate enough to allow for substantial amounts of surface water to flow, pool and perhaps even form an ocean. (And who knows, maybe even for life to begin.)

But since the magnetic field of Mars fell apart after its iron inner core was somehow undone, about 90 percent of the Martian atmosphere was stripped away by charged particles in that solar wind, which can reach speeds of 250 to 750 kilometers per second.

Mars, of course, is frigid and dry now, but Green said the dynamics of the solar system point to a time when the planet will warm up again.

James Green, the longtime director of NASA’s Planetary Science Division. (NASA)

He said that scientists expect the gradually increasing heat of the sun will warm the planet sufficiently to release the covering of frozen carbon dioxide at the north pole, will start water ice to flow, and will in time create something of a greenhouse atmosphere. But the process is expected to take some 700 millon years.

“The key to my idea is that we now know that Mars lost its magnetic field long ago, the solar wind has been stripping off the atmosphere (in particular the oxygen) ever since, and the solar wind is in some kind of equilibrium with the outgassing at Mars,” Green said. (Outgassing is the release of gaseous compounds from beneath the planet’s surface.)

“If we significantly reduce the stripping, a new, higher pressure atmosphere will evolve over time. The increase in pressure causes an increase in temperature. We have not calculated exactly what the new equilibrium will be and how long it will take.”

The reason why is that Green and his colleagues found that they needed to add some additional physics to the atmospheric model, dynamics that will become more important and clear over time. But he is confident those physics will be developed.

He also said that the European Space Agency’s Trace Gas Orbiter now circling Mars should be able to identify molecules and compounds that could play a significant role in a changing Mars atmosphere.

So based on those new magnetic field models and projections about the future climate of Mars, when might it be sufficiently changed to become significantly more human friendly?

Well, a relatively small change in atmospheric pressure can stop an astronaut’s blood from boiling, and so protective suits and clothes would be simpler to design. But the average daily range in temperature on Mars now is 170 degrees F, and it will take some substantial atmospheric modification to make that more congenial.

Green’s workshop focused on what might be possible in the mid 21st century, so he hopes for some progress in this arena by then.

This image combines depicts an orbital view of the north polar region of Mars, based on data collected from two instruments aboard NASA’s Mars Global Surveyor, depicts an orbital view of the north polar region of Mars. About 620 miles across, the white sections are primarily water ice. Frozen carbon dioxide accumulates as a comparatively thin layer about one meter thick on the north cap in the northern winter only. NASA/JPL-Caltech/MSSS

One of many intriguing aspects of the paper is its part in an NASA effort to link fundamental models together for everything from predicting global climate to space weather on Mars.

The modeling of a potential artificial magnetosphere for Mars relied, for instance, on work done by NASA heliophysics – the quite advanced study of our own sun.

Chuanfei Dong, an expert on space weather at Mars, is a co-author on the paper and did much of the modeling work. He is now a postdoc at Princeton University, where he is supported by NASA.

He used the Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme (BATS-R-US) model to test the potential shielding effect of an artificial magnetosphere, and found that it was substantial when the magnetic field created was sufficiently strong.  Substantial enough, in fact, to greatly limit the loss of Martian atmosphere due to the solar wind.

As he explained, the artificial dipole magnetic field has to rotate to prevent the dayside reconnection, which in turn prevents the nightside reconnection as well.

If the artificial magnetic field does not block the solar winds properly, Mars could lose more of its atmosphere. That why the planet needs to be safely within the magnetotail of the artificial magnetosphere.

In their paper, the authors acknowledge that the plan for an artificial Martian magnetosphere may sound “fanciful,” but they say that emerging research is starting to show that a miniature magnetsphere can be used to protect humans and spacecraft.

In the future, they say, it is quite possible that an inflatable structure can generate a magnetic dipole field at a level of perhaps 1 or 2 Tesla (a unit that measures the strength of a magnetic field) as an active shield against the solar wind. In the simulation, the magnetic field is about 1.6 times strong than that of Earth.

 

A Mars with a magnetic field and consequently a thicker atmosphere would not likely be particularly verdant anytime soon. But it might make a human presence there possible.

As a summary of what Green and others are thinking, here is the “results” section of the short paper:

“It has been determined that an average change in the temperature of Mars of about 4 degrees C will provide enough temperature to melt the CO2 veneer over the northern polar cap.

“The resulting enhancement in the atmosphere of this CO2, a greenhouse gas, will begin the process of melting the water that is trapped in the northern polar cap of Mars. It has been estimated that nearly 1/7th of the ancient ocean of Mars is trapped in the frozen polar cap. Mars may once again become a more Earth-like habitable environment.

The results of these simulations will be reviewed (with) a projection of how long it may take for Mars to become an exciting new planet to study and to live on.”

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail