In Search of Panspermia (and Life on Icy Moons)

Facebooktwittergoogle_plusredditpinterestlinkedinmail

 

Sometimes personal affairs intervene for all of us, and they have now for your Many Worlds writer and his elderly father.  But rather than remain off the radar screen, I wanted to repost this column which has a new import. 

It turns out that versions of the instrument described below — a miniature gene sequencing device produced by Oxford Nanopore — have been put forward as the kind of technology that could detect life in the plume of Enceladus, or perhaps on Europa or Titan. 

Major figures in the astrobiology field, including Steve Benner of the Foundation for Applied Molecular Evolution (FfAME) and Chris McKay of NASA Ames Research Center see this kind of detection of the basic polymer backbone of RNA or DNA life as a potentially significant way forward.  Three different “Icy Moon” teams are vying for a NASA New Frontiers mission to Enceladus and Titan, and this kind of technology plays a role in at least one of the proposed missions.

 

Early Earth, like early Mars and no doubt many other planets, was bombarded by meteorites and comets. Could they have arrived "living" microbes inside them?
Early Earth, like early Mars and no doubt many other planets, was bombarded by meteorites and comets. Could they have arrived “living” microbes inside them?

When scientists approach the question of how life began on Earth, or elsewhere, their efforts generally involve attempts to understand how non-biological molecules bonded, became increasingly complex, and eventually reached the point where they could replicate or could use sources of energy to make things happen.  Ultimately, of course, life needed both.

Researchers have been working for some time to understand this very long and winding process, and some have sought to make synthetic life out of selected components and energy.  Some startling progress has been made in both of these endeavors, but many unexplained mysteries remain at the heart of the processes.  And nobody is expecting the origin of life on Earth (or elsewhere) to be fully understood anytime soon.

To further complicate the picture, the history of early Earth is one of extreme heat caused by meteorite bombardment and, most important, the enormous impact some 4.5 billion years of the Mars-sized planet that became our moon.  As a result, many early Earth researchers think the planet was uninhabitable until about 4 billion years ago.

Yet some argue that signs of Earth life 3.8 billion years ago have been detected in the rock record, and lifeforms were certainly present 3.5 billion years ago.  Considering the painfully slow pace of early evolution — the planet, after all, supported only single-cell life for several billion years before multicellular life emerged — some

dna animation. the big 300
A DNA helix animation. Life on Earth is based on DNA, and some researchers have been working on ways to determine whether DNA life also exists on Mars or elsewhere in the solar system.

researchers are skeptical about the likelihood of DNA-based life evolving in the relatively short window between when Earth became cool enough to support life and the earliest evidence of actual life.

So what else, from a scientific as opposed to a religious perspective, might have set into motion the process that made life out of non-life?

One long considered yet generally quickly dismissed answer is getting new attention and a little more respect.  It invokes panspermia, the sharing of life via meteorites from one planet to another, or delivery by comet.

In this context, the question generally raised is whether Earth might have been seeded by early Martian life (if it existed).  Mars, it is becoming increasingly accepted, was probably more habitable in its early period than Earth.  But panspermia inherently could go the other way as well, or possibly even between solar systems.

A team of prominent scientists at MIT and Harvard are sufficiently convinced in the plausibility of panspermia that they have spent a decade, and a fair amount of NASA and other funding, to design and produce an instrument that can be sent to Mars and potentially detect DNA or more primitive RNA.

In other words, life not only similar to that on Earth, but actually delivered long ago from Earth. It’s called the The Search for Extraterrestrial Genomes, or SETG.

Gary Ruvkun is one of those researchers, a pioneering molecular biologist at Massachusetts General Hospital and professor of genetics at Harvard Medical School.

I heard him speaking recently at a Space Sciences Board workshop on biosignatures, where he described the real (if slim) possibility that DNA or RNA-based life exists now on Mars, and the instrument that the SETG group is developing to detect it should it be there.

Did meteorites spread life between planets, and maybe even solar systems? Some pretty distinguished people think that it may well have happened. This illustration is an artist's rendering of the comet Siding Spring approaching Mars in 2015.
Did meteorites spread life between planets, and maybe even solar systems? Some pretty distinguished people think that it may well have happened. This illustration is an artist’s rendering of the comet Siding Spring approaching Mars in 2015. (NASA)

The logic of panspermia — or perhaps “dispermia” if between but two planets — is pretty straight-forward, though with some significant question marks.  Both Earth and Mars, it is well known, were pummeled by incoming meteorites in their earlier epochs, and those impacts are known to have sufficient force to send rock from the crash site into orbit.

Mars meteorites have been found on Earth, and Earth meteorites no doubt have landed on Mars.  Ruvkun said that recent work on the capacity of dormant microbes to survive the long, frigid and irradiated trip from planet to planet has been increasingly supportive.

“Earth is filled with life in every nook and cranny, and that life is wildly diverse,” he told the workshop.  “So if you’re looking for life on Mars, surely the first thing to look for is life like we find on Earth.  Frankly, it would be kind of stupid not to.”

Gary Ruvkun, professor of genetics at MIT, and a principal investigator for The Search for Extraterrestrial Genomes.
Gary Ruvkun, professor of genetics at MIT, and a principal investigator for The Search for Extraterrestrial Genomes. (Kris Snibbe/Harvard News Office)

The instrument being developed by the group, which is led by Ruvkun and Maria Zuber, MIT vice president for research and head of the Department of Earth, Atmospheric and Planetary Sciences.  It would potentially be part of a lander or rover science package and would search DNA or RNA, using techniques based on the exploding knowledge of earthly genomics.

The job is made easier, Ruvkun said, by the fact that the basic structure of DNA is the same throughout biology.  What’s more, he said, there about 400 specific genes sequences “that make up the core of biology — they’re found in everything from extremeophiles and bacteria to worms and humans.”

Those ubiquitous gene sequences, he said, were present more than 3 billion years ago in seemingly primitive lifeforms that were, in fact, not primitive at all.  Rather, they had perfected some genetic pathways that were so good that they still used by most everything alive today.

And how was it that these sophisticated life processes emerged not all that long (in astronomical or geological terms) after Earth cooled enough to be habitable?  “Either life developed here super-fast or it came full-on as DNA life from afar,” Ruvkun said.  It’s pretty clear which option he supports.

Ruvkun said that the rest of the SETG team sees that kind of inter-planetary transfer — to Mars and from Mars — as entirely plausible, and that he takes panspermia a step forward. He thinks it’s possible, though certainly not likely nor remotely provable today, that life has been around in the cosmos for as long as 10 billion years, jumping from one solar system and planet to another.  Not likely, but at idea worth entertaining.

A state-of-the-art instrument for reading DNA sequences in the field. The MIT/Harvard team is working with the company that makes it, and several others, on refining how it would do that kind of sequencing on Mars. (Oxford Nanopore)
A state-of-the-art instrument for reading DNA sequences in the field. The MIT/Harvard team is working with the company that makes it, and several others, on refining how it would do that kind of sequencing of live DNA on Mars. The extremely high-tech thumb drive weighs about 3 ounces. (Oxford Nanopore)

Maria Zuber of MIT, who was the PI for the recent NASA GRAIL mission to the moon, has been part of the SETG team since near its inception, and MIT research scientist Christopher Carr is the project manager.  Zuber said it was a rather low-profile effort at the start, but over the years has attracted many students and has won NASA funding three times including the currently running Maturation of Instruments for Solar System Exploration (MatISSE) grant.

“I have made my career out of doing simple experiments. if want to look for life beyond earth helps to know what you’re looking for.

“We happen to know what life on Earth is like– DNA based or possibly RNA-based as Gary is looking for as well.  The point is that we know what to look for.  There are so many possibilities of what life beyond Earth could be like that we might as well test the hypothesis that it, also, is DNA based.  It’s a low probability result, but potentially very high value.”

DNA sequencing instruments like the one her team is developing are taken to the field regularly by thousands of researchers, including some working with with SETG.  The technology has advanced so quickly that they can pick up a sample in a marsh or desert or any extreme locale and on the spot determine what DNA is present.  That’s quite a change from the pain-staking sequencing done painstakingly by graduate students not that long ago.

Panspermia, Zuber acknowledged, is a rather improbable idea. But when nature is concerned, she said  “I’m reticent to say anything is impossible. After all, the universe is made up of the same elements as those on Earth, and so there’s a basic commonality.”

Zuber said the instrument was not ready to compete for a spot on the 2020 mission to Mars, but she expects to have a sufficiently developed one ready to compete for a spot on the next Mars mission.  Or perhaps on missions to Europa or the plumes of Enceladus.

Maria Zuber, MIT vice president for research, and the principal investigator for the SETG project. (MIT)
Maria Zuber, MIT vice president for research, and the principal investigator for the SETG project. (MIT)

The possibility of life skipping from planet to planet clearly fascinates both scientists and the public.  You may recall the excitement in the mid 1990s over the Martian meteorite ALH84001, which NASA researchers concluded contained remnants of Martian life.  (That claim has since been largely refuted.)

Of the roughly 61,000 meteorites found on Earth, only 134 were deemed to be Martian as of two years ago.  But how many have sunk into oceans or lakes, or been lost in the omnipresence of life on Earth?  Not surprisingly, the two spots that have yielded the most meteorites from Mars are Antarctica and the deserts of north Africa.

And when thinking of panspermia, it’s worthwhile to consider the enormous amount of money and time put into keeping Earthly microbes from inadvertently hitching a ride to Mars or other planets and moons as part of a NASA mission.

The NASA office of planetary protection has the goal of ensuring, as much as possible, that other celestial bodies don’t get contaminated with our biology.  Inherent in that concern is the conclusion that our microbes could survive in deep space, could survive the scalding entry to another planet, and could possibly survive on the planet’s surface today. In other words, that panspermia (or dispermia) is in some circumstances possible.

Testing whether a spacecraft has brought Earth life to Mars is actually another role that the SETG instrument could play.  If a sample tested on Mars comes back with a DNA signature result exactly like one on Earth–rather one that might have come initially from Earth and then evolved over billions of years– then scientists will know that particular bit of biology was indeed a stowaway from Earth.

Rather like how a very hardy microbe inside a meteorite might have possibly traveled long ago.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Planetary Protection is a “Wicked” Problem

Facebooktwittergoogle_plusredditpinterestlinkedinmail
The Viking landers were baked for 30 hours after assembly, a dry heat sterilization that is considered the gold standard for planetary protection.  Before the baking, the landers were given a preliminary cleaning to reduce the number of potential microbial spores.  The levels achieved with that preliminary cleaning are similar to what is now required for a mission to Mars unless the destination is an area known to be suitable for Martian life.  In that case, a sterilizing equivalent to the Viking baking is required.  (NASA)

The only time that a formally designated NASA “life detection” mission was flown to another planet or moon was when the two Viking landers headed to Mars forty years ago.

The odds of finding some kind of Martian life seemed so promising at the time that there was little dispute about how much energy, money and care should be allocated to making sure the capsule would not be carrying any Earth life to the planet.  And so after the two landers had been assembled, they were baked at more than 250 °F for three days to sterilize any parts that would come into contact with Mars.

Although the two landers successfully touched down on the Martian surface and did some impressive science, the life detection portion of the mission was something of a fiasco — with conflict, controversy and ultimately quite a bit of confusion.

Clearly, scientists did not yet know enough about how to search for life beyond Earth and the confounding results pretty much eliminated life-detection from NASA’s missions for decades.

But scientific and technological advances of the last ten years have put life detection squarely back on the agenda — in terms of future searches for fossil biosignatures on Mars and for potential life surviving in the oceans of Europa and Enceladus.  What’s more, both NASA and private space companies talk seriously of sending humans to Mars in the not-too-distant future.

With so many missions being planned, developed and proposed for solar system planets and moons, the issue of planetary protection has also gained a higher profile.  It seems to have become more contentious and to some seems far less straight-forward as it used to be.

A broad consensus appears to remain that bringing Earth life to another planet or moon, especially if it is potentially habitable, is a real possibility that is both scientifically and ethically fraught. But there are rumblings about just how much time, money and attention needs to be brought to satisfying the requirements of “planetary protection.”

In fact, it has become a sufficiently significant question that the first plenary session of the recent Astrobiology Science Conference in Mesa, Arizona was dedicated to it.  The issue, which was taken up in later technical sessions as well, was how to assess and weigh the risks of bringing Earth life to other bodies versus the benefits of potentially sending out more missions, more often and more cheaply.

It is not a simple problem, explained Andrew Maynard, director of the Risk Innovation Lab at Arizona State University.  Indeed, he told the audience of scientists that it was a “wicked problem,” a broadly used terms for issues that are especially complex and involve numerous issues and players.

 

A primary barrier to keeping microbes off spacecraft and instruments going to space is to build them in clean rooms, such as this one at JPL.  These large rooms with filtered air do help lower the count of microbes on surfaces, but the bacteria are everywhere and further steps are essential.  (NASA/JPL-Caltech)

As he later elaborated to me, other “wicked” risk-benefit problems include gene editing and autonomous driving — both filled with great potential and serious potential downsides.  Like travel to other planets and moons.

“This is subjective,” Maynard said, “but I’d put planetary protection on the more wicked end of the spectrum. It combines individual priorities and ethics  — what people and groups deeply believe is right — with huge uncertainties.  That makes it something never really experienced before and so escalates all factors of wickedness.”

Those groups include scientists (who very much don’t want Mars or another potentially habitable place to be contaminated with Earth life before they can get there), to advocates of greater space exploration (who worry that planetary protection will slow or eliminate some missions they very much want to proceed), to NASA mission managers (worried about delays and costs associated with planetary protections surprises.)

And then there’s the general public which might (or might not) have entirely different ethical concerns about the potential for contaminating other planets and moons with Earth life.

No wonder the problem is deemed wicked.

We’ll get into the pros and cons, but first some background:

I asked NASA’s Planetary Protection officer, Catharine Conley, whether Earth life has been transported to its most likely solar system destination, Mars.

Her reply:  “There are definitely Earth organisms that we’ve brought to Mars and are still alive on the spacecraft.”

Catharine “Cassie” Conley has been NASA’s Planetary Protection officer since 2006. There is only one other full-time official in the world with the same responsibilities, and he works for the European Space Agency. (NASA/W. Hrybyk)

She said it is quite possible that some of those organisms were brushed off the vehicles or otherwise were shed and fell to the surface. Because of the strong ultraviolet radiation and the Earth life-destroying chemical makeup of the soil, however, it’s unlikely the organisms could last for long, and equally unlikely that any would have made it below the surface.  Nonetheless, it is sobering to hear that Earth life has already made it to Mars.

Related to this reality is the understanding that Earth life, in the form of bacteria, algae and fungi and their spores, can be extraordinarily resilient.  Organisms have been discovered that can survive unimagined extremes of heat and cold, can withstand radiation that would kill us, and can survive as dormant spores for tens of thousands of years.

What’s more, Mars scientists now know that the planet was once much warmer and wetter, and that ice underlies substantial portions of the planet. There are even signs today of seasonal runs of what some scientists argue is very briny surface water.

So the risk of Earth life surviving a ride to another planet or moon is probably greater than imagined earlier, and the possibility of that Earth life potentially surviving and spreading on a distant surface (think the oceans of Europa and Enceladus, or maybe a briny, moist hideaway on Mars) is arguably greater too.  From a planetary protection perspective, all of this is worrisome.

The logic of planetary protection is, like almost everything involved with the subject, based on probabilities.  Discussed as far back as the 1950s and formalized in the 1967 Outer Space Treaty, the standard agreed on is to take steps that ensure there is less than a 1 in 10,000 chance of a spaceship or lander or instrument from Earth bringing life to another body.

This figure takes into account the number of microorganisms on the spacecraft, the probability of growth on the planet or moon where the mission is headed, and a series of potential sanitizing to sterilizing procedures that can be used.  A formula for assessing the risk of a mission for planetary protection purposes was worked out in 1965 by Carl Sagan, along with Harvard theoretical physicist Sidney Coleman.

Deinococcus radiodurans is an extremophilic bacterium, one of the most radiation-resistant organisms known. It can survive cold, dehydration, vacuum, and acid, and is therefore known as a polyextremophile and is considered perhaps the world’s toughest bacterium. It can withstand a radiation dose 1,000 times stronger than what would kill a person.

A lot has been learned since that time, and some in the field say it’s time to re-address the basics of planetary protection.  They argue, for instance, that since we now know that Earth life can (theoretically, at least) be carried inside a meteorite from our planet to Mars, then Earth life may have long been on Mars — if it is robust enough to survive when it lands.

In addition, a great deal more is known about how to sanitize a space vehicle without baking it entirely — a step that is both very costly and could prove deadly to the more sophisticated capsules and instruments.  And more is known about the punishing environment on the surface of Mars and elsewhere.

People ranging from Mars Society founder Robert Zubrin to Cornell University Visiting Scientist Alberto G. Fairén in Nature Geoscience have argued — and sometimes railed — against planetary protection requirements. NASA mission managers have often voiced their concerns as well.  The regulations, some say, slow the pace of exploration and science to avoid a vanishingly small risk.

Brent Sherwood, planetary mission formulation manager for JPL, is currently overseeing two proposed projects for New Frontiers missions.  One is to search for signs of life on Saturn’s moon Enceladus and the other for habitability on the moon Titan. (Brent Sherwood)

Brent Sherwood, program manager for solar system mission formulation at JPL, spoke at AbSciCon about what he sees as the need for a review and possibly reassessment of the planetary protection rules and regulations.  As someone who helps scientists put together proposals for NASA missions in the solar system, he has practical and long considered views about planetary protection.

He and his co-authors argue that the broad conversation that needs to take place should include scientists, ethicists, managers, and policy makers; and especially should include the generations that will actually implement and live with the consequences of these missions.

In the abstract for his talk, Sherwood wrote:

“The (1 chance in 10,000) requirement may not be as logically sound or deserving of perpetuation as generally assumed.  What status should this requirement have within an ethical decision-making process? Do we need a meta-ethical discussion about absolute values, rather than an arbitrary number that purports to govern the absolute necessity of preserving scientific discovery or protecting alien life?”

As he  later he told me: “I’m recommending that we be proactive and engage the broadest possible range of stakeholder communities…. With these big, hairy risk problems, everything is probabilistic and open to argument.  People are bad at thinking of very small and very big numbers, and the same for risks.  They tend to substitute opinion for fact.”

Sherwood is no foe of planetary protection.  But he said planetary protection is a “foundational” part of the space program, and he wants to make sure it is properly adapted for the new space era we are entering.

Elon Musk of SpaceX, Jeff Bezos of Blue Origins and NASA have all talked about potentially sending astronauts to Mars or establishing a colony on Mars in the decades ahead.  Many obstacles remain, but planning is underway. (Bryan Versteeg/Spacehabs.com)

Planetary protection officer Conley contends that regular reviews are already built into the system.  She told me that every mission gets a thorough planetary protection assessment early in the process, and that there is no one-size-fits-all approach.  Rather, the risks and architecture of the missions are studied within the context of the prevailing rules.

In addition, she said, the group that oversees planetary protection internationally — the Committee on Space Research (COSPAR) — meets every two years and its Panel on Planetary Protection takes up general topics and welcomes input from whomever might want to raise issues large or small.

“You hear it said that there are protected areas on Mars or Europa where missions can’t go, but that’s not the case,” she said.  “These are sensitive areas where life just might be present now or was present in the past.  If that’s the case, then the capsule or lander or rover has to be sterilized to the level of the Viking missions.”

She said that she understood that today’s spacecraft are different from Viking, which was designed and built from scratch with planetary protection in mind.  Today, JPL and other mission builders get some of their parts “off the shelf” in an effort to make space exploration less expensive.

“We do have to balance the goals of exploration and space science with making sure that Earth life does not take hold.  We also have to be aware that taxpayer money is being spent.  But if a mission sent out returns a signal of life, what have we achieved if it turns out to be life we brought there?

“I see planetary protection as a great success story.  People identified a potential contamination problem back in the ’50s, put regulations into place, and have succeeded in avoiding the problem.  This kind of global cooperation that leads to the preventing of a potentially major problem just doesn’t happen that often.”

The global cooperation has been robust, Conley said, despite the fact that only NASA and the European Space Agency have a full-time planetary protection officer.  She cited the planning for the joint Russian-Chinese mission to the Martian moon Phobos as an example of other nations agreeing to very high standards.  She and her European Space Agency (ESA) counterpart traveled twice to Moscow to discuss planetary protection steps being taken.

Andrew Maynard is the director of Arizona State University’s Risk Innovation Lab and is a professor in School for the Future of Innovation in Society.  (ASU.)

So far, she said private space companies have been attentive to planetary protection as well.  Some of the commercial space activity in the future involves efforts to mine on asteroids, and Conley said there is no planetary protection issues involved.  The same with mining on our moon.

But should the day arrive that private companies such as SpaceX and Blue Origin seriously propose a human mission to Mars — as they have said they plan to — Conley said they would have the same obligations as any NASA mission.  The US has not yet determined how to ensure that compliance, she said, but companies already would need Federal Aviation Administration approval for a launch, and planetary protection is part of that.

Risk innovation expert Maynard, however, was not so sure about those protections.  He said he could imagine a situation where Elon Musk of SpaceX or Jeff Bezos of Blue Origin or any other space entrepreneur around the world would decide to move their launch to a nation that would be willing to provide the service without intensive planetary protection oversight.

“The risk of this may be small, but this is all about the potentially outsize consequences of small risks,” he said.

Maynard said that was hardly a likely scenario — and that commercial space pioneers so far have been supportive of planetary protection guidelines — but that he was well aware of the displeasure among some mission managers and participating scientists about planetary protection requirements.

Given all this, it’s easy to see how and why planetary protection advocates might feel that the floodgates are being tested, and why space explorers looking forward to a time when Mars and other bodies might be visited by astronauts and later potentially colonized are concerned about potential obstacles to their visions.

An artist’s rendering of a sample return from Mars.  Both the 2020 NASA Mars mission and the ESA-Russian mission are designed to identify and cache intriguing rocks for delivery to Earth in the years ahead. (Wickman Spacecraft & Propulsion)

This column has addressed the issue of “forward contamination” — how to prevent Earth life from being carried to another potentially habitable solar system body and surviving there.  But there is another planetary protection worry and that involves “backward contamination” — how to handle the return of potentially living extraterrestrial organisms to Earth.

That will be the subject of a later column, but suffice it to say it is very much on the global space agenda, too.

The Apollo astronauts famously brought back pounds of moon rocks, and grains of asteroid and comet dust have also been retrieved and delivered.  A sample return mission by the Russian and Chinese space agencies was designed to return rock or grain samples from the Martian moon Phobos earlier this decade, but the spacecraft did not make it beyond low Earth orbit.

However, the future will see many more sample return attempts.  The Japanese space agency JAXA launched a mission to the asteroid 162173 Ryugu in 2014 (Hayabusa 2) and it will arrive there next year.  The plan is to collect rock and dust samples and bring them back to Earth.  NASA’s OSIRIS-REx is also making its way to an asteroid, 101955 Bennu, with the goal of collecting a sample as well for return to Earth.

And in 2020 both NASA and ESA (with Russian collaboration) will launch spacecraft for Mars with the intention of preparing for future sample returns.  Sample return is a very high priority in the Mars and space science communities, and many consider it essential for determining whether there has ever been life on Mars.

So the “wicked” challenges of planetary protection are only going to mount in the years ahead.

 

 

 

 

 

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

How to Give Mars an Atmosphere, Maybe

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Many Worlds site has been down for almost two weeks following the crash of the server used to publish it.  We never expected it would take quite this long to return to service, but now we are back with a column today and another one for early next week.

An artist rendering of what Mars might look like over time if efforts were made to give it an artificial magnetic field to then enrich its atmosphere and made it more hospitable to human explorers and scientists. (NASA)

Earth is most fortunate to have vast webs of magnetic fields surrounding it. Without them, much of our atmosphere would have been gradually torn away by powerful solar winds long ago, making it unlikely that anything like us would be here.

Scientists know that Mars once supported prominent magnetic fields as well, most likely in the early period of its history when the planet was consequently warmer and much wetter. Very little of them is left, and the planet is frigid and desiccated.

These understandings lead to an interesting question: if Mars had a functioning magnetosphere to protect it from those solar winds, could it once again develop a thicker atmosphere, warmer climate and liquid surface water?

James Green, director of NASA’s Planetary Science Division, thinks it could. And perhaps with our help, such changes could occur within a human, rather than an astronomical, time frame.

In a talk at the NASA Planetary Science Vision 2050 Workshop at the agency’s headquarters, Green presented simulations, models, and early thinking about how a Martian magnetic field might be re-constituted and the how the climate on Mars could then become more friendly for human exploration and perhaps communities.

It consisted of creating a “magnetic shield” to protect the planet from those high-energy solar particles. The shield structure would consist of a large dipole—a closed electric circuit powerful enough to generate an artificial magnetic field.

Simulations showed that a shield of this sort would leave Mars in the relatively protected magnetotail of the magnetic field created by the object. A potential result: an end to largescale stripping of the Martian atmosphere by the solar wind, and a significant change in climate.

“The solar sytstem is ours, let’s take it,” Green told the workshop. “And that, of course, includes Mars. But for humans to be able to explore Mars, together with us doing science, we need a better environment.”

 

An artificial magnetosphere of sufficient size generated at L1 – a point where the gravitational pull of Mars and the sun are at a rough equilibrium — allows Mars to be well protected by what is known as the magnetotail. The L1 point for Mars is about 673,920 miles (or 320 Mars radii) away from the planet. In this image, Green’s team simulated the passage of a hypothetical extreme Interplanetary Coronal Mass Ejection at Mars. By staying inside the magnetotail of the artificial magnetosphere, the Martian atmosphere lost an order of magnitude less material than it would have otherwise. (J. Green)

Is this “terraforming,” the process by which humans make Mars more suitable for human habitation? That’s an intriguing but controversial idea that has been around for decades, and Green was wary of embracing it fully.

“My understanding of terraforming is the deliberate addition, by humans, of directly adding gases to the atmosphere on a planetary scale,” he wrote in an email.

“I may be splitting hairs here, but nothing is introduced to the atmosphere in my simulations that Mars doesn’t create itself. In effect, this concept simply accelerates a natural process that would most likely occur over a much longer period of time.”

What he is referring to here is that many experts believe Mars will be a lot warmer in the future, and will have a much thicker atmosphere, whatever humans do. On its own, however, the process will take a very long time.

To explain further, first a little Mars history.

Long ago, more than 3.5 billion years in the past, Mars had a much thicker atmosphere that kept the surface temperatures moderate enough to allow for substantial amounts of surface water to flow, pool and perhaps even form an ocean. (And who knows, maybe even for life to begin.)

But since the magnetic field of Mars fell apart after its iron inner core was somehow undone, about 90 percent of the Martian atmosphere was stripped away by charged particles in that solar wind, which can reach speeds of 250 to 750 kilometers per second.

Mars, of course, is frigid and dry now, but Green said the dynamics of the solar system point to a time when the planet will warm up again.

James Green, the longtime director of NASA’s Planetary Science Division. (NASA)

He said that scientists expect the gradually increasing heat of the sun will warm the planet sufficiently to release the covering of frozen carbon dioxide at the north pole, will start water ice to flow, and will in time create something of a greenhouse atmosphere. But the process is expected to take some 700 millon years.

“The key to my idea is that we now know that Mars lost its magnetic field long ago, the solar wind has been stripping off the atmosphere (in particular the oxygen) ever since, and the solar wind is in some kind of equilibrium with the outgassing at Mars,” Green said. (Outgassing is the release of gaseous compounds from beneath the planet’s surface.)

“If we significantly reduce the stripping, a new, higher pressure atmosphere will evolve over time. The increase in pressure causes an increase in temperature. We have not calculated exactly what the new equilibrium will be and how long it will take.”

The reason why is that Green and his colleagues found that they needed to add some additional physics to the atmospheric model, dynamics that will become more important and clear over time. But he is confident those physics will be developed.

He also said that the European Space Agency’s Trace Gas Orbiter now circling Mars should be able to identify molecules and compounds that could play a significant role in a changing Mars atmosphere.

So based on those new magnetic field models and projections about the future climate of Mars, when might it be sufficiently changed to become significantly more human friendly?

Well, a relatively small change in atmospheric pressure can stop an astronaut’s blood from boiling, and so protective suits and clothes would be simpler to design. But the average daily range in temperature on Mars now is 170 degrees F, and it will take some substantial atmospheric modification to make that more congenial.

Green’s workshop focused on what might be possible in the mid 21st century, so he hopes for some progress in this arena by then.

This image combines depicts an orbital view of the north polar region of Mars, based on data collected from two instruments aboard NASA’s Mars Global Surveyor, depicts an orbital view of the north polar region of Mars. About 620 miles across, the white sections are primarily water ice. Frozen carbon dioxide accumulates as a comparatively thin layer about one meter thick on the north cap in the northern winter only. NASA/JPL-Caltech/MSSS

One of many intriguing aspects of the paper is its part in an NASA effort to link fundamental models together for everything from predicting global climate to space weather on Mars.

The modeling of a potential artificial magnetosphere for Mars relied, for instance, on work done by NASA heliophysics – the quite advanced study of our own sun.

Chuanfei Dong, an expert on space weather at Mars, is a co-author on the paper and did much of the modeling work. He is now a postdoc at Princeton University, where he is supported by NASA.

He used the Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme (BATS-R-US) model to test the potential shielding effect of an artificial magnetosphere, and found that it was substantial when the magnetic field created was sufficiently strong.  Substantial enough, in fact, to greatly limit the loss of Martian atmosphere due to the solar wind.

As he explained, the artificial dipole magnetic field has to rotate to prevent the dayside reconnection, which in turn prevents the nightside reconnection as well.

If the artificial magnetic field does not block the solar winds properly, Mars could lose more of its atmosphere. That why the planet needs to be safely within the magnetotail of the artificial magnetosphere.

In their paper, the authors acknowledge that the plan for an artificial Martian magnetosphere may sound “fanciful,” but they say that emerging research is starting to show that a miniature magnetsphere can be used to protect humans and spacecraft.

In the future, they say, it is quite possible that an inflatable structure can generate a magnetic dipole field at a level of perhaps 1 or 2 Tesla (a unit that measures the strength of a magnetic field) as an active shield against the solar wind. In the simulation, the magnetic field is about 1.6 times strong than that of Earth.

 

A Mars with a magnetic field and consequently a thicker atmosphere would not likely be particularly verdant anytime soon. But it might make a human presence there possible.

As a summary of what Green and others are thinking, here is the “results” section of the short paper:

“It has been determined that an average change in the temperature of Mars of about 4 degrees C will provide enough temperature to melt the CO2 veneer over the northern polar cap.

“The resulting enhancement in the atmosphere of this CO2, a greenhouse gas, will begin the process of melting the water that is trapped in the northern polar cap of Mars. It has been estimated that nearly 1/7th of the ancient ocean of Mars is trapped in the frozen polar cap. Mars may once again become a more Earth-like habitable environment.

The results of these simulations will be reviewed (with) a projection of how long it may take for Mars to become an exciting new planet to study and to live on.”

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Curiosity Has Found The Element Boron On Mars. That’s More Important Than You Might Think

Facebooktwittergoogle_plusredditpinterestlinkedinmail
ChemCam target Catabola is a raised resistant calcium sulfate vein with the highest abundance of boron observed so far. The red outline shows the location of the ChemCam target remote micro images (inset). The remote micro images show the location of each individual ChemCam laser point (red crosshairs) and the B chemistry associated with each point (colored bars). The scale bar is 9.2 mm or about 0.36 inches. Credit JPL-Caltech/MSSS/LANL/CNES-IRAP/William Rapin
Using its laser technology, the Curiosity ChemCam instrument located the highest abundance of boron observed so far on this raised calcium sulfate vein. The red outline shows the location of the ChemCam target remote micro images (inset). The remote micro images show the location of each individual ChemCam laser point (red crosshairs) and the additional chemistry associated with each point (colored bars).  JPL-Caltech/MSSS/LANL/CNES-IRAP/William Rapin

For years, noted chemist and synthetic life researcher Steven Benner has talked about the necessary role of the element boron in the origin of life.

Without boron, he has found, many of the building blocks needed to form the earliest self-replicating ribonucleic acid (RNA) fall apart when they come into contact with water, which is nonetheless needed for the chemistry to succeed. Only in the presence of boron, Benner found and has long argued, can the formation of RNA and later DNA proceed.

Now, to the delight of Benner and many other scientists, the Curiosity team has found boron on Mars.  In fact, as Curiosity climbs the mountain at the center of Gale Crater, the presence of boron has become increasingly pronounced.

And to make the discovery all the more meaningful to Benner, the boron is being found in rock veins.  So it clearly was carried by water into the fractures, and was deposited there some 3.5 billion years ago.

Combined with earlier detections of phosphates, magnesium, peridots, carbon and other essential elements in Gale Crater, Benner told me, “we have found on Mars an environment entirely consistent with a what we consider conducive for the origin of life.

“Is it likely that life arose?  I’d say yes…perhaps even, hell yes.  But it’s also true that an environment conducive to the formation of life isn’t necessarily one conducive to the long-term survival of life.”

The foreground of this scene from the Mastcam on NASA's Curiosity Mars rover shows purple-hued rocks near the rover's late-2016 location. The middle distance includes future destinations for the rover. Variations in color of the rocks hint at the diversity of their composition on lower Mount Sharp. Credits: NASA/JPL-Caltech/MSSS
The foreground of this scene from the Mastcam on NASA’s Curiosity Mars rover shows purplish rocks near the rover’s late-2016 location. The middle distance includes future destinations for the rover. Variations in color of the rocks hint at the diversity of their composition on lower Mount Sharp. NASA/JPL-Caltech/MSSS

Another factor in the Mars-as-habitable story from Benner’s view is that there has never been the kind of water world there that many believe existed on early Earth.

While satellites orbiting Mars and now Curiosity have made it abundantly clear that early Mars also had substantial water in the form of lakes, rivers, streams and perhaps an localized ocean, it was clearly never covered in water.

And that’s good for the origin of life, Benner said.

Steven Benner and his colleagues were the first to synthesize a gene, beginning the field of synthetic biology. He was instrumental in establishing the field of paleogenetics. He founded The Westheimer Institute of Science and Technology (TWIST) and the Foundation For Applied Molecular Evolution.
Steven Benner and his colleagues were the first to synthesize a gene, beginning the field of synthetic biology. He was instrumental in establishing the field of paleogenetics. He founded The Westheimer Institute of Science and Technology (TWIST) and the Foundation For Applied Molecular Evolution.

“We think that a largely arid environment, with water present but not everywhere, is the best one for life to begin.  Mars had that but Earth, well, maybe not so much.  The problem is how to concentrate the makings of RNA, of life, in a vast ocean.  It’s like making a cake in water — all the ingredients will float away.

“But the mineral ensemble they’ve discovered and given us is everything we could have asked for, and it was on a largely dry Mars,” he said.  “So they’ve kicked the ball back to us.  Now we have to go back to our labs to enrich the chemistry around this ensemble of minerals.”

In his labs, Benner has already put together a process — he calls it his discontinuous synthesis model — whereby all the many steps needed to create RNA and therefore life have been demonstrated to be entirely possible.

What’s missing is a continuous model that would show that process at work, starting with a particular atmosphere and particular minerals and ending up with RNA.   That’s something that requires a lot more space and time than any lab experiments would provide.

“This is potentially what Mars provides,” he said,

Benner, it should be said, is not a member of the Curiosity team and doesn’t speak for them.

But his championing of boron as a potentially key element for the origin of life was noted as a guide by one of the Curiosity researchers during a press conference with team members at the American Geophysical Union Dec. 13 in San Francisco.  It was at that gathering that the detection of the first boron on Mars was announced.

Benner said he has been in close touch with the two Curiosity instrument teams involved in the boron research and was most pleased that his own boron work — and that of at least one other researcher — had helped inspire the search for and detection of the element on Mars.  That other researcher, evolutionary biologist James Stephenson, had detected boron in a meteorite from Mars.

Patrick Gasda, a postdoctoral researcher at Los Alamos National Laboratory, is a member of the Chemistry and Camera (ChemCam) instrument team which identified the boron at Gale Crater.  The instrument uses laser technology to identify chemical elements in Martian rocks.

Gasda said at AGU that if the boron they found in calcium sulfate rock veins on Mars behaves there as it does on Earth, then the environment was conducive to life.  The ancient groundwater that formed these veins would have had temperatures in the 0-60 degrees Celsius (32-140 degrees Fahrenheit) range, he said, with a neutral-to-alkaline pH.

While the presence of boron (most likely the mineral form borate, Benner said) has increased as the rover has climbed Mount Sharp, the element still makes up only one-tenth of one percent of the rock composition.  But to stabilize that process of making RNA, that’s enough.

This pair of drawings depicts the same location at Gale Crater on at two points in time: now and billions of years ago. Water moving beneath the ground, as well as water above the surface in ancient rivers and lakes, provided favorable conditions for microbial life, if Mars has ever hosted life. Credits: NASA/JPL-Caltech
A drawing of Gale Crater as it is organized now.  Water moving beneath the ground, as well as water above the surface in ancient rivers and lakes, provided favorable conditions for microbial life, if Mars has ever hosted life. A well-done animation including a second drawing showing conditions 3.5 billion years ago at Gale can be seen here.   It toggles back and forth to show how things have changed.  (NASA/JPL-Caltech)

Benner’s view of Gale Crater and Mars as entirely habitable is not new — the Curiosity team has been saying roughly the same for several years now.  But with four full years on Mars the rover keeps adding to the habitability story, and that was the central message from Curiosity scientists speaking at the AGU press conference.

As the rover examines higher, younger layers, the researchers said they were especially impressed by the complexity of the ancient lake environments at Gale when sediments were being deposited, and also the complexity of the groundwater interactions after the sediments were buried.

“There is so much variability in the composition at different elevations, we’ve hit a jackpot,” said John Grotzinger of Caltech, and formerly the mission scientist for Curiosity.

“A sedimentary basin such as this is a chemical reactor. Elements get rearranged. New minerals form and old ones dissolve. Electrons get redistributed. On Earth, these reactions support life.”

This kind of reactivity occurs on a gradient based on the strength of a chemical at donating or receiving electrons. Transfer of electrons due to this gradient can provide energy for life.

The ChemCam instrument, with its laser zapper, identified the element boron as Curiosity climbs Mount Sharp. (NASA)
An illustration of the ChemCam instrument, with its laser zapper, which identified the element boron as Curiosity climbs Mount Sharp. (NASA)

While habitability is key to Curiosity’s mission on Mars, much additional science is being done  that has different goals or looks more indirectly at the planet’s ancient (or possibly current) ability to support life.  Understanding the ancient environmental history of Gale Crater and Mars is a good example.

For instance, the Curiosity team is now undertaking a drilling campaign in progressively younger rock layers, digging into four sites each spaced about 80 feet (about 25 meters) further uphill.  Changes in which minerals are present and in what percentages they exist give insights into some of that ancient history.

One clue to changing ancient conditions is the presence of the mineral hematite, a form of the omnipresent iron oxide on Mars.  Hematite has replaced magnetite as the dominant iron oxide in rocks Curiosity has drilled recently, compared with the site where Curiosity first found lake bed sediments.

Thomas Bristow of NASA Ames Research Center, who works with the Chemistry and Mineralogy (CheMin) laboratory instrument inside the rover, said Mars is sending a signal. Both forms of iron oxide (hematite and magnetite) were deposited in mudstone in what was once the bottom of a lake, but the increased abundance of hematite higher up Mount Sharp suggests conditions were warmer when it was laid down.  There also was probably more interaction between the atmosphere and the sediments.

On a more technical level, an increase in hematite relative to magnetite also indicates an environmental change towards a stronger tug on the iron oxide electrons, causing a greater degree of oxidation (the loss of electrons) in the iron.  That would likely be caused by changing atmospheric conditions.

It’s all part of putting together the jigsaw puzzle of Mars circa 3.5 billion years ago.

This view from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover shows an outcrop with finely layered rocks within the "Murray Buttes" region on lower Mount Sharp. (NASA/JPL-Caltech/MSSS)
This view from the Mast Camera (Mastcam) on NASA’s Curiosity Mars rover shows an outcrop with finely layered rocks within the “Murray Buttes” region on lower Mount Sharp. (NASA/JPL-Caltech/MSSS)

Returning to the boron story, Benner said that the discovered presence of all the chemicals his group believes are necessary to ever-so-slowly move from prebiotic chemistry to biology provides an enormous opportunity. Because of plate tectonics on Earth and the omnipresence of biology, the conditions and environments present on early Earth when life first arose were long ago destroyed.

But on Mars, the apparent absence of those most powerful agents of change means it’s possible to detect, observe and study conditions in a changed but intact world that just might have given rise to life on Mars.  Taken a step further, Mars today could provide new and important insights into how life arose on Earth.

And then there’s the logic of what finding signs of ancient, or perhaps deep-down surviving life on Mars would mean to the larger search for life in the cosmos.

That life exists on one planet among the hundreds of billions we now know are out there suggests that other planets — which we know have many or most of the same basic chemicals as Earth — might have given rise to life as well.

And if two planets in one of those many, many solar system have produced and supported life, then the odds go up dramatically regarding life on other planets.

One planet with life could be an anomaly.  Two nearby planets with life, even if its similar, are a trend.

 

 

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Search for Organic Compounds On Mars Is Getting Results

Facebooktwittergoogle_plusredditpinterestlinkedinmail
This photograph, taken by NASA's Mars Rover Curiosity in 2015, shows sedimentary rocks of the Kimberley Formation in Gale Crater. The crater contains thick deposits of finely-laminated mudstone that represent fine-grained sediments deposited in a standing body of water that persisted for a long period of time - long enough to allow sediments to accumulate to significant thickness. Image by NASA. Enlarge image. [8]
Sedimentary rocks of the Kimberley Formation in Gale Crater, as photographed in 2015. The crater contains thick deposits of finely-laminated mudstone from fine-grained sediments deposited in a standing body of water that persisted for a long period of time.  Scientists have now reported several detections of organic compounds — the building blocks of life in Gale Crater samples. (NASA/JPL-Caltech/MSSS)

One of the primary goals of the Curiosity mission to Mars has been to search for and hopefully identify organic compounds — the carbon-based molecules that on Earth are the building blocks of life.

No previous mission had quite the instruments and capacity needed to detect the precious organics, nor did they have the knowledge about Martian chemistry that the Curiosity team had at launch.

Nonetheless, finding organics with Curiosity was no sure things.  Not only is the Martian surface bombarded with ultraviolet radiation that breaks molecules apart and destroys organics, but also a particular compound now known to be common in the soil will interfere with the essential oven-heating process used by NASA to detect organics.

So when Jennifer Eigenbrode, a biogeochemist and geologist at the Goddard Space Flight Center and a member of the Curiosity organics-searching team,  asked her colleagues gathered for Curiosity’s 2012 touch-down whether they thought organics would be found, the answer was not pretty.

“I did a quick survey across the the team and I was convinced that a majority in the room were very doubtful that we would ever detect organics on Mars, and certainly not in the top five centimeters or the surface.”

Yet at a recent National Academies of Sciences workshop on “Searching for Life Across Space and Time,” Eigenbrode gave this quite striking update:

“At this point, I can clearly say that I am convinced, and I hope you will be too, that organics are all over Mars, all over the surface, and probably through the rock record.  What does that mean? We’ll have to talk about it.”

 The hole drilled into this rock target, called "Cumberland," was made by NASA's Mars rover Curiosity on May 19, 2013. Credit: NASA/JPL-Caltech/MSSS
The hole drilled into this rock target, called “Cumberland,” was made by NASA’s Mars rover Curiosity on May 19, 2013.  One of the samples found to have organics was from the Cumberland hole. (NASA/JPL-Caltech/MSSS)

This is not, it should be said, the first time that a member of the Curiosity “Sample Analysis on Mars”  (SAM) team has reported the discovery of organic material.   The simple, but very important organic gas methane was detected in Gale Crater,  as were chlorinated hydrocarbons. Papers by Sushil Atreya of the University of Michigan and  Daniel Glavin and Caroline Freissinet from Goddard, along with other team members from the SAM team, have been published on all these finds.

But Eigenbrode’s work and her comments at the workshop– which acknowledged the essential work of SAM colleagues — move the organics story substantially further.

That’s because her detections involve larger organic compounds, or rather pieces of what were once larger organics.  What’s more, these organics were found only when the Mars samples were cooked at over over 800 degrees centigrade in the SAM oven, while the earlier ones came off as detectable gases at significantly lower temperatures.

Goddard biogeochemist Jennifer Eigenbrode, who is an expert at detecting organic compounds in rocks, is using R&D funds to develop a simplified sample-processing method that could be applied to a robotic chemistry lab. Photo Credit: Chris Gunn Summer 2008
Goddard biogeochemist Jennifer Eigenbrode, an expert at detecting organic compounds in rocks, has found them in Martian samples collected by the Curiosity rover.
(Chris Gunn)

These latest carbon-based organics were most likely bound up inside minerals, Eigenbrode said. Their discovery now is a function of having an oven on Mars that, for the first time, can get hot enough to break them apart.

The larger molecules bring with them additional importance because, as Eigenbrode explained it, 75 to 90 percent of organic compounds are of this more complex variety.  What’s more, she said that the levels at which the compounds are present, as well as where they were found, suggests a pretty radical conclusion:  that they are a global phenomenon, most likely found around the planet.

Her logic is that the overall geochemistry of soil at Gale Crater as read by Curiosity instruments is quite similar to the chemistry of samples tested by earlier rovers at two other sites on Mars, Gusev Crater and Meridiani Planum.

Many Mars scientists are comfortable with taking these parallel bulk chemistry readouts — the sum total of all the chemicals found in the samples — and inferring that much of the planet has a similar chemical makeup.

Taking the logic a step further, Eigenbrode proposed to the assembled scientists that the signatures of carbon-based organics are also a global phenomenon.

“I think it just might be,” she told the NAS workshop, which was organized by the Space Studies Board. “We’ll have to find out more, but I think there’s a good possibility.”

That’s quite a jump — from a situation not long ago when no organics had been knowingly  detected on Mars, to one where there’s a possibility they are everywhere.

The Sample Analysis on Mars instrument has the job of searching for, among other xxx, organics on Mars. And it seems to have succeeded, despite some major obstacles. (NASA/Goddard Space Flight Center)
The Sample Analysis on Mars (SAM) instrument has the job of searching for, among other targets, organics on Mars.  It heats the scooped or drilled samples to as much as 860 degrees C, cooking them until compounds come off in a gas form.  Then it sniffs the gases and identifies them.  It is the most complex instrument on Curiosity and has come up with important results, despite some major obstacles. (NASA/Goddard Space Flight Center)

And actually, they should be found everywhere.  Not only do organic molecules rain down from the sky embedded in asteroids and interstellar dust, but they can also be formed abiotically out of chemicals on Mars and, just possibly, can be the products of biological activity.

The fact that Mars surely has had organics on its surface and elsewhere has made the non-detection of organics a puzzle.  In fact, that conclusion of “no organics present” following the Viking landings in the mid 1970s set the Mars program back several decades.  If there weren’t even organic compounds to be found, the thinking went, then a search for actual living creatures was pointless.

As is now apparent, the Viking instrument used to detect organics didn’t have the necessary diagnostic power that SAM has. What’s more, the scientists working with it did not know about a particular chemical on the Martian surface that was skewing the results.  Plus the scientists may well have misunderstood their own findings.

First with the question of technological muscle.  The oven associated with the search for organics is part of a Gas Chromatograph Mass Spectrometer (GCMS), and it heats and breaks apart dirt and rock samples for analysis of their chemical makeup. The oven on the Viking landers only went up to 500 degrees C.  But the SAM oven on Curiosity goes hotter. It detected signs of organics between 500 and 850 degrees C.

In addition, NASA’s Phoenix lander discovered in 2008 that the Martian soil contained the salt perchlorate, which when burned in a GCMS oven can mask the presence of organics.  And finally, the Viking landers actually did detect organics in the form of simple chlorinated hydrocarbons.  They were determined at the time to be contamination from Earth, but the same compounds have been detected by Curiosity, suggesting that Viking might actually have found Martian, rather than Earthly, organics.

Image taken by Viking 2 on Mars in 1976. Results from both Viking landers reported no organic material in their samples, strongly suggesting there was no chance of current or past life. Recent readings by the SAM instrument on the Curiosity rover suggest the Viking conclusions were not correct, and that the instruments then did not have the capacity to detect Martian organics. NASA
Image taken by Viking 2 on Mars in 1976. Results from both Viking landers reported no organic material in their samples, strongly suggesting there was no chance of current or past life. Recent readings by the SAM instrument on the Curiosity rover suggest the Viking conclusions were not correct, and that the instruments then did not have the capacity to detect Martian organics. (NASA)

What makes carbon-based organic compounds especially interesting to scientists is that life is made of them and produces them.  So one source of the organics in Martian samples could be biology, Eigenbrode said.  But she said there were other potential sources that might be more plausible.

Organics, for instance, can be formed through non-biological geothermal and hydrothermal processes on Earth, and presumably on Mars too.  In addition, both meteorites and interstellar dust are known to contain organic compounds, and they rain down on Mars as they do on Earth.

Eigenbrode said the organics being detected could be coming from any one source, or from all of them.

Asked at the workshop what concentrations of organics were found, she replied with a grin that more light will be shed on the question at next week’s American Geophysical Union meeting.

The detection of a growing variety of organics on Mars adds to the conclusion already reached by the Curiosity team — that Mars was once much wetter, warmer and by traditional definitions “habitable.”  That doesn’t mean that life ever existed there, but rather that what are considered basic basic conditions for life were present for many millions of years.

Eigenbrode said that the detection of these carbon-based compounds is important in terms of both the distant past and the perhaps mid-term future.

For the past, it means that organics in a substantial reservoir of water like the one at Gale Crater some 3.6 billion years ago could have been a ready source of energy for microbial life.  The microbes would then have been heterotrophs, which get their nutrition from organic material.    Autotrophs, simpler organisms, are  capable of synthesizing their own food from inorganic substances using light or chemical energy.

But Eigenbrode also sees the organics as potentially good news for the future — for possibly still living microbes on Mars and also for humans who might be trying to survive there one day.

“Thinking forward, the organic matter could be really important for farming — a ready energy source provided by the carbon,”  she said.

Just what a human colony on Mars some day might need.

 

 

 

 

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail