Breakthrough Findings on Mars Organics and Mars Methane

Facebooktwittergoogle_plusredditpinterestlinkedinmail
The Curiosity rover on Mars takes a selfie at a site named Mojave. Rock powdered by the rover drill system and then intensively heated rock and then heated to as much as 800 degrees centigrade produced positive findings for long-sought organics. (NASA/JPL-Caltech/MSSS.)

A decades-long quest for incontrovertible and complex Martian organics — the chemical building blocks of life — is over.

After almost six years of searching, drilling and analyzing on Mars, the Curiosity rover team has conclusively detected three types of naturally-occurring organics that had not been identified before on the planet.

The Mars organics Science paper, by NASA’s Jennifer Eigenbrode and much of the rover’s Sample Analysis on Mars (SAM) instrument team, was twinned with another paper describing the discovery of a seasonal pattern to the release of the simple organic gas methane on Mars.

This finding is also a major step forward not only because it provides ground truth for the difficult question of whether significant amounts of methane are in the Martian atmosphere, but equally important it determines that methane concentrations appear to change with the seasons. The implications of that seasonality are intriguing, to say the least.

In an accompanying opinion piece in Science, Inges Loes ten Kate of Utrecht University in  Netherlands wrote of the two papers: “Both these findings are breakthroughs in astrobiology.”

The clear conclusion of these (and other) recent findings is that Mars is not a “dead” planet where little ever changes.  Rather, it’s one with cycles that appear to produce not only methane but also sporadic surface water and changing dune formations.

Remains of 3.5 billion-year old lake that once filled Gale Crater. NASA scientists concluded early in the Curiosity mission that the planet was habitable long ago based on the study of mudstone remains like these. (NASA/JPL-Caltech/MSSS)

Finding organic compounds on Mars has been a prime goal of the Curiosity rover mission.

Those carbon-based compounds surely fall from the sky on Mars, as they do on Earth and everywhere else, but identifying them has proven illusive.

The consequences of that non-discovery have been significant.  Going back to the Viking missions of 1976, scientists concluded that life was not possible on Mars because there were no organics, or none that were detected.

Jen Eigenbrode, research astrobiologist at NASA’s Goddard Space Flight Center. (NASA/W. Hrybyk)

But the reasons for the disappearing organics are pretty well understood.  Without much of an atmosphere to protect it, the Martian surface is bombarded with ultraviolet radiation, which can destroy organic compounds.  Or, in the case of the samples discovered by the SAM team, large organic macromolecules — the likes of proteins, membranes and DNA — are broken up into much smaller pieces.

That’s what the team found, Eigenbrode told me. The organics were probably preserved, she said, because of exceptionally high levels of sulfur present in that part of Gale Crater.

The organics, extracted from mudstone at the Mojave and Confidence Hill sites, had bonded tightly with ancient non-organic material.  The organic material was freed to be collected as gas only after being exposed to temperatures of more than 500 to 800 centigrade in the SAM oven.

“This material was buried for billions of years and then exposed to extreme surface conditions, so there’s a limit to what we can learn about.  Did it come from life?  We don’t know.

“But the fact we found the organic carbon adds to the habitability equation.  It was in a lake environment that we know could have supported life.  Organics are things that organisms can eat.”

It will take different kinds of instruments and samples from drilling deeper into the extreme Martian surface to answer the question of whether the organics came from living microbes.  But for Eigenbrode, future answers of either “yes” or “no” are almost equally interesting.

Finding clear signs of early Martian life would certainly be hugely important, she said.  But a conclusion that Mars never had life — although it had conditions some 3.5 to 3.8 billion years ago quite similar to conditions on Earth at that time — raises the obvious question of “why not?”

NASA’s Curiosity rover raised robotic arm with drill pointed skyward while exploring Vera Rubin Ridge at the base of Mount Sharp inside Gale Crater. This navcam camera mosaic was stitched from raw images taken on Sol 1833, Oct. 2, 2017 and colorized. (NASA/JPL-Caltech/Ken Kremer, Marco Di Lorenzo)

Organic molecules are the building blocks of all known life on Earth, and consist of a wide variety of molecules made primarily of carbon, hydrogen, and oxygen atoms. However, organic molecules can also be made by chemical reactions that don’t involve life.

Examples of non-biological sources include chemical reactions in water at ancient Martian hot springs or delivery of organic material to Mars by interplanetary dust or fragments of asteroids and comets.

It needs to be said that today’s Mars organics announcement was not the first we have heard.  In 2014, a NASA team reported the presence of chlorine-based organics in Sheepbed mudstone at Yellowknife Bay, the first ancient Mars lake visited by Curiosity.

That work, led by NASA Goddard scientists Caroline Freissinet and Daniel Glavin and published in the Journal of Geophysical Research, focused on signatures from unusual organics not seen naturally on Earth.

The organics were complex and made entirely of Martian components, the paper reported.  But because they combined chlorine with the organic hydrocarbons, they are not considered to be as “natural” as the discovery announced today.

And when it comes to organics on Mars, the complicated history of research into the presence of the gas methane (a simple molecule that consists of carbon and hydrogen) also shows the great challenges involved in making these measurements on Mars.

By measuring absorption of light at specific wavelengths, the tunable laser spectrometer on Curiosity measures concentrations of methane, carbon dioxide and water vapor in the Martian atmosphere. (NASA)

 

The gold-plated Sample Analysis on Mars contains three instruments that make the measurements of organics and methane.  (NASA/Goddard Space Flight Center)

The second Science paper, authored by Chris Webster of NASA’s Jet Propulsion Lab and colleagues, reports that the gas methane has been detected regularly in recent years, with surprising seasonality.

“The history of Mars methane has been frustrating, with reports of some large plumes and spikes detected, but none have been repeatable.  It’s almost like they’re random,” he told me.  “But now we can see a large seasonal cycle in the background of these detections, and that’s extremely important.”

Over three Mars years, or almost five Earth years, Webster said there have been significant increases in methane detected during the summer, and especially the late summer. That tripling of the methane counts is considered too great to be random, especially since the count declines as predicted after the summer ends.

No definite explanation of why this happens has emerged yet, but one theory has been embraced by some scientists.

While it is still cold in the Martian summer, it can get warm enough where the sun shines directly on a collection of ice for some melting to occur.  And that melting, the paper reports, could provide an escape valve for methane collected long ago under the surface.  The process is termed “microseepage.”

 

This illustration shows the ways in which methane from the subsurface might find its way to the
surface where its release could produce the large seasonal variation in the atmosphere
as observed by Curiosity. Potential methane sources include byproducts from organisms alive or long dead, ultraviolet degradation of organics, or water-rock chemistry; and its losses include atmospheric photochemistry and surface reactions. Seasons refer to the northern hemisphere. The plotted data is from Curiosity’s TLS-SAM instrument, and the curved line through the data is to aid the eye. (NASA/JPL-Caltech)

Methane is a crucial organic in astrobiology because most of that gas found on Earth comes from biology, although various non-biological processes can produce methane as well.

Today’s paper by Webster et al is the third in Science on Mars methane as measured by Curiosity, and it is the first to find a seasonal pattern.  The first paper, in 2013,  actually reported there was no methane measured in early runs, a conclusion that led to push-back from many of those working in the field.

While the Mars methane results released today are being described as a “breakthrough,” they follow closely the findings of a Science paper in 2009 by Michael Mumma and Geronimo Villanueva, both at NASA Goddard.

The two reported then similar findings of plumes of methane on Mars, of a seasonality associated with their distribution, and a similar conclusion that the methane probably was coming from subsurface reservoirs.  Like Webster et al, Mumma and Villanueva said they were unable to determine if the source of methane was biological or geological.

The methane levels in the plumes they found were considerably higher than detected so far by Curiosity, but what they were detecting was quite different.  Using ground-based telescopes, they detected the high concentrations in two specific areas over a number of years, while Curiosity is measuring methane levels that are more global or regional.

Red areas indicate where in 2003 ground-based observers detected concentrations of methane in the Martian atmosphere, measured in parts per billion (ppb).  (NASA / M. Mumma & others)

Just as Webster was criticized for his initial paper saying there was no methane detected on Mars, the Mumma team also got sharp questions about their methodology and conclusions.  This grew as their numerous follow-up efforts to detect the Mars methane proved unsuccessful.

But now Webster says the Curiosity findings have essentially “confirmed” what Mumma and Villanueva reported nine years ago.

Still, the Curiosity results are a breakthrough because they were made on Mars rather than through a telescope. Mumma, who described the new Curiosity results as “satisfying,” agreed that they were a major step forward.

“This is how science works,” he said.  “We do our work and put out our papers and other scientists react.  We take it all in and make changes if needed.  But the big changes come when new, and maybe different, data is presented.”

And that’s exactly what will be happening soon regarding methane on Mars.  Beginning early this year, the European/Russian Trace Gas Orbiter (TGO) has been collecting data specifically on Mars gases including methane.  Unlike previous Mars methane campaigns, this one can potentially determine whether the methane being released from below the surface was formed by biology or geology — although not without great difficulty.

Mumma, who is part of that TGO team, said the first release of information is due in the fall.

 

 

 

 

 

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

A Reprieve for Space Science?

Facebooktwittergoogle_plusredditpinterestlinkedinmail
View of WFIRST focusing on supernova SN1995E in NGC 2441. The high-priority but embattled space telescope would, if congressional support continues, add greatly to knowledge about dark energy and dark matter, supernovae, and exoplanets.  (NASA)

 

A quick update on a recent column about whether our “golden age” of space science and discovery was in peril because of cost overruns and Trump administration budget priorities that emphasized human space travel over science.

The 2018 omnibus spending bill that was passed Wednesday night by the House of Representatives and Thursday night by the Senate represents a major push back against the administration’s earlier NASA budget proposals.  Not only would the agency receive $1.6 billion more funding than proposed by the administration, but numerous projects that had been specifically eliminated in that proposal are back among the living.

They include four Earth science satellites, a lander to accompany the Europa Clipper mission to that potentially habitable moon and, perhaps most important, the Wide Field Infrared Survey Telescope (WFIRST) space telescope.

Funding for that mission, which was the top priority of the space science community and the National Academy of Sciences for the 2020s, was eliminated in the proposed 2019 Trump budget, but WFIRST received $150 million in the just-passed omnibus bill.

A report accompanying the omnibus bill is silent about the proposed cancellation and instructs NASA to provide to Congress in 60 days a cost estimate for the full life cycle of the mission, including any additions that might be needed.  So there appears to be a strong congressional desire to see WFIRST launch and operate.

Still hanging fire is the fate of the James Webb Space Telescope, which has fallen behind schedule again and is in danger of crossing the $8 billion cap put into place by Congress in 2011.  NASA officials said this week that they will soon announce their determination about whether a breach of the program’s cost cap will occur as a result of further delays.

NASA has a fleet of 18 Earth science missions in space, supported by aircraft, ships and ground observations. Together they have revolutionized understanding of the planet’s atmosphere, the oceans, the climate and weather. The Obama administration emphasized Earth studies, but the Trump administration has sought to eliminate future Earth missions. This visualization shows the NASA fleet in 2017, from low Earth orbit all the way out to the DSCOVR satellite taking in the million-mile view. (Goddard Space Flight Center/Matthew R. Radclif)

 

Four of the five Earth science programs the administration sought to cancel are specifically named for funding in the omnibus bill — the Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission, the CLARREO Pathfinder and Orbiting Carbon Observatory 3 instruments and the Earth observation instruments on the Deep Space Climate Observatory spacecraft. A fifth program was already cancelled by NASA earlier this year for technical reasons.

In all, the Science Mission Directorate would receive $6,221 million, an increase of $456  million.  Language in the bill explicitly “reiterates the importance of the decadal survey process and rejects the cancellation of scientific priorities.”

While all this is promising and hopeful, it may well be a short-term reprieve — as reported in that earlier column.

A two-year budget deal reached earlier this year raised spending caps substantially for both defense and non-defense programs, freeing up additional funding that may or may not be available in future years. The 2019 budget needs to be passed in six months, and funds could easily be stripped out then or in subsequent years.

But most important, the administration’s plans to focus on sending astronauts to the moon and establish a colony there could and almost certainly would, in time, eat up large portions of the space science budget.

Under the omnibus bill, NASA would receive $4.79 billion for space exploration efforts, up $466 million over 2017 funding levels.  This includes $2.15 million for the heavy-lift Space Launch System and $1.35 for the Orion space capsule.

The bill also provides $350 million to build a second mobile launch platform at the Kennedy Space Center. NASA considered, but did not request, funding in its 2019 proposal for a second platform.  If built, it could substantially shorten the gap between the first and second launches of SLS by eliminating the delays that would inevitably come at the launch site as it is modified to handle subsequent larger rockets.

 

Illustration of the Space Launch System as it will appear on the launch pad. In development for almost decade, it is now scheduled for a maiden launch in 2019. (NASA)

 

In some of its funding, the omnibus bill seems almost too good to be true.

The planetary science program, for instance, received $300 million more than last year.  The $2.2 billion total includes $595 million for work on the Europa Clipper mission and for a follow-on lander — a scientifically exciting aspect of the Europa program, but one that had earlier been cancelled.

The bill also keeps earlier plans to use the SLS to launch Europa Clipper by 2022 and the lander by 2024. An SLS launch would halve the number of years it would take to get the spacecraft to Europa, a moon of Jupiter.

But NASA’s assessment of the SLS program make it highly unlikely that the rockets will be ready for those launches, and there are competing plans to use the second SLS launch to send humans into orbit.

As a kind of added treat, the omnibus bill also provides $23 million for a proposed helicopter NASA has under consideration for the the Mars 2020 rover mission.

The Trump administration has shown great interest in manned missions and little interest in space science and especially Earth science.

Clearly, many members of Congress have very different views, informed no doubt by a highly mobilized space science community.  And for now, at least, they appear to have carried the day.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Space Science In Peril

Facebooktwittergoogle_plusredditpinterestlinkedinmail

NASA’s decades-long success at enabling ground-breaking discoveries about our planet, our solar system, our galaxy, our origins and the billions of other planets out there is one of the crown jewels of our nation’s collective inventiveness and will, and surely of our global soft power.

Others have of course made major contributions as well.  But from the Viking Mars landings of the 1970s on to the grand space observatories Hubble and Spitzer and Chandra, to the planetary explorations such as Cassini (Saturn), Galileo and Juno (Jupiter), New Horizons (Pluto and beyond) and Curiosity (Mars), to the pioneering exoplanet census of Kepler, the myriad spacecraft enhancing our understanding of our own planet and the sun, and the pipeline confidently filled with of missions to come, NASA has been the consistent and essential world leader.

What we know of our world writ large has just exploded in these decades, and we’re far richer for it.

But of late, the future of these efforts to ever expand our knowledge of the logic and make-up of our universe has become worryingly unclear.

First there are the recently revealed new problems with the James Webb Space Telescope, initially scheduled to launch years ago and now reportedly unlikely to meet its launch date next year.  It is also over budget again and under serious threat.

This news came as Congress wrestled with the White House decision to scuttle the WFIRST dark energy, planet and star formation, and exoplanet mission, planned as NASA’s major flagship mission of the 2020s.

And perhaps most worrisome, NASA now wants to fold its Space Technology Mission Directorate into the Human Exploration and Operations Directorate, surely to support the administration’s goal of setting up a human colony on the moon.

This is an Apollo-sized, many-year and very costly effort that would have to take funds away from potential space science missions unless the NASA budget was growing substantially. But the proposed 2019 NASA budget would cap spending for the next four years.

Might our Golden Era of space discovery be winding down?

 

An illustration of the James Webb Space Telescope after deploying in space.  The pioneering technology of the JWST is both its great promise and recurring pitfall. (NASA)

 

First the JWST situation.  The telescope, far more powerful and complex than anything sent into space, is expected to open up new understandings about the origins of the universe, xxx, and exoplants.

But late last month, the General Accounting Office released a report that said:

“The James Webb Space Telescope, the planned successor to the Hubble Telescope, is one of NASA’s most complex and expensive projects.

“NASA recently announced that JWST’s launch would be delayed several months, from October 2018 to no later than June 2019, because components of the telescope are taking longer to integrate than planned.

“Based on the amount of work NASA has to complete before JWST is ready to launch, we found that it’s likely the launch date will be delayed again. If that happens, the project will be at risk of exceeding the $8 billion cost cap set by Congress.”

That cost cap was put in place in 2011, after a House subcommittee voted to end the project entirely because of overruns.  The full Congress then agreed to continue funding but only to the $8 billion mark.

Will Congress agree to more money if the agency needs more time to complete launch preparations?  Or will the money have to come out of the existing NASA budget?  It seems highly unlikely that the project will be halted but all the overruns and delays — often based on the difficulties associated with new technologies — cast a pall of sorts over plans for big space science projects in the decades ahead.

The long-term ramifications of the JWST delays and overruns could be substantial.  The space community began pushing in the 1970s for the launching of a new grand space observatory every decade, and the science and public engagement results have been tremendous.  The process of selecting a grand observatory mission for the 2030s is underway now, with teams of scientists and engineers feverishly gathering ideas, data, technology know-how and cost predictions for four contenders.

Two focus on astrophysics and questions about the make-up and origins of the universe and two on exoplanets and the effort to determine if some might have the conditions that could support life and, perhaps, might actually do so.  Those two are the Habitable-Exoplanet Imaging Mission (HabEx), and Large Ultraviolet-Optical-Infrared Surveyor (LUVOIR).

Both are likely to be quite costly, and LUVOIR in particular.  But unlike HabEx, LUVOIR would have the power and kinds of instruments needed to determine not only if life might be possible on an exoplanet, but potentially if that life is present.  It would be a Hubble on steroids — a dream observatory that would have the ability to transform (or greatly deepen) space science.

 

If it is restored to the NASA budget, WFIRST would survey distant galaxies looking for the effects of dark matter, that mysterious stuff that can’t be seen or touched but outnumbers normal matter by roughly 5 to 1. The telescope would study Type Ia supernovas to track dark energy, that strange repulsive force that is causing the universe to expand faster and faster. The observatory could  use its instruments to explore the planets around other stars and to better understand how stars and planets are formed . (NASA)

 

But the enormous promise of a LUVOIR or HabEx helps explain some of the scientific dismay about the administration’s decision to cancel NASA’s  “flagship” observatory of the 2020s, the Wide Field Infrared Survey Telescope (WFIRST.)

Selected in 2010 by the space science community and later the National Academy of Sciences as the priority mission of the 2020s,  WFIRST would focus on the nature of dark matter, the expansion of the universe, and would push forward some exoplanet observing as well.

So cancelling of the mission — if Congress now allows that to happen — would not only eliminate an important observatory that would keep NASA in the forefront of space astrophysics, but would also send a message that even being selected as the top priority space mission for the decade does not provide ironclad protection.

At space subcommittee hearing of the House Science Committee with NASA Acting Administrator Robert Lightfoot, Rep. Ami Bera (D. Calif.) voiced that concern earlier this month.

“The decadal survey has served us well, and not looking at this scientific-based prioritization and moving away from that can certainty set a dangerous precedent,” Bera warned.

 

James Irwin on the moon during the Apollo 15 mission of the summer of 1971.  While Apollo was an enormous success, it took up large percentages of the NASA budget between 1964 and 1972.  The peak was 1967, when it accounted for 70 percent of the NASA budget.  In all, the program cost the 2016 equivalent of $107 billion.  (NASA)

 

The elephant in the room in this discussion is easy to identify — the administration’s well-publicized desire to set up an on-going human colony of Americans on the moon, or at least to get American astronauts back on the lunar surface during the 2020s.  The stated goals are exploration, commercial and international joint ventures and geopolitics, with seldom a mention of science.

The proposed 2019 budget does not set aside a great deal of money for the moon project, but it does do something that worries many former NASA leaders and NASA followers — the funding for space technology and innovation ($1 billion) will now be housed within the human exploration directorate, as “Exploration Research and Technology.”

The stated logic is that technological advancement should be directed toward human space exploration.

“The FY 2019 budget is restructured to align with the Administration’s new space exploration policy by consolidating and refocusing existing NASA technology development activities on space exploration,” the budget document reads.

This will inevitably take some funds away from technology projects that could be useful across NASA’s directorates, but more important sets the stage for a ramp up in funding for moon missions in the years ahead.  And since the proposed 2019 budget would cap NASA funds for the next four years, other NASA programs would have to suffer — most notably Earth sciences and other science exploration unrelated to the moon.

Seldom discussed by those excited by the prospect of continuing the legacy of the Apollo program and having Americans return to the moon is that Apollo was extraordinarily expensive and required great national sacrifice.

During the 1960s the NASA budget (which was directed in large part into the Mercury and Apollo manned missions) took up as much as four percent of the federal budget (the equivalent of $40 billion today.)  For six years it took up three percent or more of the budget.  The NASA budget is now at its lowest point since 1959 as a percentage of the federal budget — less than one-half of one percent of the budget —  and provides less than $20 billion and has for decades.

It seems pretty clear that ambitious humans-on-the-moon project would mean fewer Cassinis, fewer Hubbles, fewer Keplers.

Another sign of the lowering profile of NASA science is the proposal in the 2019 budget to launch the other NASA flagship science mission of the 2020s, the flyby of Jupiter’s moon Europa, on a commercial heavy-lift rocket rather than NASA’s Space Launch System.  The SLS was sold to Congress as the vehicle that could send spacecraft speedily to outer planets, but now both production delays and a desire to quickly get astronauts into space on the SLS has made that far less likely and some years further out, if it happens at all.

Heavy lift rockets other than SLS—including SpaceX’s Falcon Heavy and the Delta IV from United Launch Alliance —lack the power to blast the Europa Clipper directly from Earth to Jupiter. A conventional rocket would rely on three gravity assists from Earth and one from Venus, increasing the transit time from about 3 years to at least 6 years.

 

The search for life, or habitable conditions, beyond Earth in the 2020s will continue on Mars and is scheduled to expand to Jupiter’s moon Europa.  The moon orbits Jupiter every 3.5 days and that proximity, coupled with the fact that Europa has a slightly elliptical rather than circular orbit, creates the tidal “flexing” and resulting heating that can keep water liquid beneath its surface of ice. The Europa Clipper mission was set by Congress to launch in 2022, but that date looks near impossible.  A plan to have an accompanying lander was sidelined because of cost. (NASA)

 

Missions happen when they are a priority, and clearly now not just a scientific priority.  Nothing is settled, but the warning signs are there that the moon program will force space science down the priority list unless NASA suddenly gets a lot more money.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Northern Lights (Part Two)

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Northern Lights at a latitude of about 70 degrees north, well within the Arctic Circle. These photos were taken about 30 miles from the town of Alta. (Lisa Braithwaite)

In my recent column about The Northern Lights, the Magnetic Field and Life,  I explored the science and the beauty of our planet’s aurora borealis, one of the great natural phenomenon we are most fortunate to see in the far North (and much less frequently in the not-quite-so-far North.)

I learned the hard way that an IPhone camera was really not up to the job;  indeed, the battery froze soon after leaving my pocket in the 10 degrees F cold.  So the column had few images from where I actually was — about a half hour outside of the Arctic Circle town of Alta.

But here now are some images taken by a generous visitor to the same faraway lodge, who was present the same time as myself.

Her name is Lisa Braithwaite and she is an avid amateur photographer and marketing manager for two popular sites in the English Lake District.  This was her first hunting trip for the Northern Lights, and she got lucky.  Even in the far northern Norway winter the lights come and go unpredictably — though you can increase your chances if you show up during a time when the sun is actively sending out solar flares.

She came with a Panasonic Lumix DMC-G5 camera and did a lot of research beforehand to increase her chances of capturing the drama should the lights appear.  Her ISOs ranged from 1,600 to 64,000, and her shutter speed from 5 to 15 seconds.  The aperture setting was 3.5.

In addition to showing some of her work, further on I describe a new NASA-led and international program, based in Norway, to study the still incompletely understood dynamics of what happens when very high energy particles from solar flares meet Earth’s atmosphere.

Partnering with the Japanese Aerospace Exploration Agency (JAXA,) the University of Oslo an other American universities, the two year project will send eleven rockets filled with instruments into the ionosphere to study phenomenon such as the auroral winds and the turbulence that can cause so much trouble to communications networks.

But first, here are some morre of Braithwaite’s images, most taken over a one hour period on a single night.

Arcs are a common feature of the lights, sometimes reaching across the sky. They form and then break up into smaller patches. (Lisa Braithwaite.)

 

The line of the Arctic Circle line can be seen a little more than half-way up the map. The Circle is the most northerly of the five major circles of latitude as shown on maps of Earth. At about 65 degrees North, it marks the northernmost point at which the noon sun is just visible on the December solstice and the southernmost point at which the midnight sun is just visible on the June solstice. (Stepmap.com)

Vast curtains of light are a common feature, often on the horizon but on good nights high up into the sky.  The lights can sometimes shimmer and dance, and can feature what appear to be vast spotlights.

 

The lights are often green — the result of interactions between high energy solar flares and oxygen.  If the lights are blue, then nitrogen is in play.  (Lisa Braithwaite)

 

At certain points in the night, large parts of the sky were lit up — leaving us turning and craning our heads to see what might be happening in different regions. (Lisa Braithwaite)

 

The light shows often start and end with green horizons.  (Lisa Braithwaite)

While the grandeur of the lights attracts an ever increasing number of adventurous lovers of natural beauty, NASA is also busy in Norway studying the forces that cause the Aurora Borealis — both for the pure science and to better understand the “space weather” that can effect astronauts in low Earth orbit as well as GPS and other communication signals.

The agency has partnered with Norwegian and Japanese colleagues, and other American scientists, in an effort to generally better understand the Earth’s polar cusp — where the planet’s magnetic field lines bend down into the atmosphere and allow particles from space to intermingle with those of Earthly origin.

Solar flares consist of electrically charged particles. They are attracted by the concentrated magnetic fields in the ionosphere around the Earth’s polar regions. This is the reason why the glorious light shows can be observed pretty much exclusively in the far north or the far south.

The two-year project will send eight rockets into space from Norway as part of collaboration of scientists known as The Grand Challenge Initiative – Cusp.

The first mission, the Auroral Zone Upwelling Rocket Experiment or AZURE, is scheduled to launch this month.  The rocket will take off from Norway’s Andøya Space Center, on an island off the far northwest coast of Norway, about 100 miles southwest of where I was near the town of Alta.

As a NASA release of March 1 described it, AZURE’s instruments will measure the atmospheric density and temperature of the polar atmosphere, and will deploy visible tracers — trimethyl aluminum (TMA) and a barium/strontium mixture, which ionize when exposed to sunlight.

Personnel from NASA’s Wallops Flight Facility in Virginia conduct payload tests for the AZURE mission at the Andøya Space Center in Norway. (NASA’s Wallops Flight Facility)

“These mixtures create colorful clouds that allow researchers to track the flow of neutral and charged particles, respectively,” the release reads. “The tracers will be released at altitudes 71 to 155 miles high and pose no hazard to residents in the region.

“By tracking the movement of these colorful clouds via ground-based photography and triangulating their moment-by-moment position in three dimensions, AZURE will provide valuable data on the vertical and horizontal flow of particles in two key regions of the ionosphere over a range of different altitudes.

“Such measurements are critical if we are to truly understand the effects of the mysterious yet beautiful aurora. The results will be key to a better understanding of the effects of auroral forcing on the atmosphere, including how and where the auroral energy is deposited.”

AZURE will focus specifically on measuring the vertical winds in these polar regions, which create a tumultuous particle soup that re-distributes the energy, momentum and chemical constituents of the atmosphere.

AZURE will study the ionosphere, the electrically charged layer of the atmosphere that acts as Earth’s interface to space, focusing specifically on the E and F regions. The E region — so-named by early radio pioneers who discovered that the region was electrically charge, and so could reflect radio waves — lies between 56 to 93 miles above Earth’s surface. The F region resides just above it, between 93 to 310 miles altitude.

The E and F regions contain free electrons that have been ejected from their atoms by the energizing input of the Sun’s rays, a process called photoionization. After nightfall, without the energizing input of the Sun to keep them separated, electrons recombine with the positively charged ions they left behind, lowering the regions’ overall electron density. The daily cycle of ionization and recombination makes the E and F regions especially turbulent and complex.

Aurora as seen from Talkeetna, Alaska, on Nov. 3, 2015. (Copyright Dora Miller)

It has been known for a century that solar flares create the fantastic displays of the Northern and Southern lights.  More recently, it has also become well known that solar flares cause problems for both satellites and navigation systems.

Despite decades of study, scientists still lack the basic knowledge required for predicting when such problems will occur. Once they understand this, it should be possible to make good space weather forecasts just like we do with our weather forecasts on Earth.

When solar storms rain down on the Earth, they cause turbulence in the ionosphere.  This turbulence is one of the major unsolved problems of classical physics and physicists are hoping that the rockets will lead to a far better understanding of the phenomenon.

“Without such an understanding of turbulence it is impossible to make the calculations needed for being able to predict severe space weather events,” said Joran Moen of the University of Oslo, and one of the project leaders. He spoke with the University of Oslo research magazine “Apollon.”

The rockets of The Grand Challenge Initiative – Cusp  mission will launch over the next two years from the Andøya and Svalbard rocket ranges in Norway. Nine of the rockets are from NASA, one from JAXA and one building built the at the University of Norway.

One particular “sounding” will be made with the launch of four rockets at once, an unusual and complex procedure.

Those involved say this will be among the most ambitious attempts ever using rockets for research purposes.

“We will try to launch four of the rockets at the same time. This has never been done before. It is a historic venture,” said Moen.

Yoshifumi Saito of JAXA further explained that “the four parallel rockets are important for us.  By using them we can obtain much better scientific results than would have been the case if we had just launched one rocket at a time.”

Important and compelling science.  And think of how many times the scientists will be able to experience the glories of the Northern Lights show.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Cassini Inside the Rings of Saturn

Facebooktwittergoogle_plusredditpinterestlinkedinmail

 

Movie produced from images taken while Cassini flew inside the rings of Saturn – a first. (NASA/JPL-Caltech/Space Science Institute)

The triumphant Cassini mission to Saturn will be coming to an end on September 15, when the spacecraft dives into the planet.  Running out of fuel, NASA chose to end the mission that way rather than run the risk of having the vehicle wander and ultimately land on Europa or Enceladus, potentially contaminating two moons very high on the list of possible habitable locales in our solar system.

Both the science and the images coming back from this descent are (and will be) pioneering, as they bring to an end one of the most successful and revelatory missions in NASA history.

As NASA promised, the 22-dive descent has already produced some of the most compelling images of Saturn and its rings.  Most especially, Cassini has delivered the remarkable 21-image video above.  The images were taken over a four minutes period on August 20 using a wide-angle camera.

The spacecraft captured the images from within the gap between the planet and its rings, looking outward as the spacecraft made one of its final dives through the ring-planet gap as part of the finale.

The entirety of the main rings can be seen here, but due to the low viewing angle, the rings appear extremely foreshortened. The perspective shifts from the sunlit side of the rings to the unlit side, where sunlight filters through.

On the sunlit side, the grayish C ring looks larger in the foreground because it is closer; beyond it is the bright B ring and slightly less-bright A ring, with the Cassini Division between them. The F ring is also fairly easy to make out.

 

NASA’s Cassini spacecraft will make 22 orbits of Saturn during its Grand Finale, exploring a totally new region between the planet and its rings. NASA/JPL-Caltech

While the Cassini team has to keep clear of the rings, the spacecraft is expected to get close enough to most likely answer one of the most long-debated questions about Saturn: how old are those grand features, unique in our solar system?

One school of thought says they date from the earliest formation of the planet, some 4.6 billion years ago. In other words, they’ve been there as long as the planet has been there.

But another school says they are a potentially much newer addition. They could potentially be the result of the break-up of a moon (of which Saturn has 53-plus) or a comet, or perhaps of several moons at different times. In this scenario, Saturn may have been ring-less for eons.

As Curt Niebur, lead program scientist at NASA headquarters for the Cassini mission, explained it, the key to dating the rings is a close view of, essentially, how dirty they are. Because small meteorites and dust are a ubiquitous feature of space, the rings would have significantly more mass if they have been there 4.6 billion years. But if they are determined to be relatively clean, then the age is likely younger, and perhaps much younger.

“Space is a very dirty place, with dust and micro-meteorites hitting everything. Over significant time scales this stuff coats things. So if the rings the rings are old, we should find very dirty ice. If there is little covering of the ice, then the rings must be young. We may well be coming to the end of a great debate.”

 

Cassini gazes across the icy rings of Saturn toward the icy moon Tethys, whose night side is illuminated by Saturnshine, or sunlight reflected by the planet. Tethys was on the far side of Saturn with respect to Cassini here; an observer looking upward from the moon’s surface toward Cassini would see Saturn’s illuminated disk filling the sky. Tethys was brightened by a factor of two in this image to increase its visibility. A sliver of the moon’s sunlit northern hemisphere is seen at top. A bright wedge of Saturn’s sunlit side is seen at lower left. (NASA/JPL-Caltech/Space Science Institute)

A corollary of the question of the age of Saturn’s rings is, naturally, how stable they are.

If they turn out to be as old as the planet, then they are certainly very stable.  But if they are not old then it is entirely plausible that they could be a passing phenomenon and will some day disappear — to perhaps re-appear after another moon is shattered or comet arrives.

Another way of looking at the rings is that they may well have been formed at different times.

As project scientist Linda Spilker explained in an email, Cassini’s measurements of the mass of the rings will be key.  “More massive rings could be as old as Saturn itself while less massive rings must be young.  Perhaps a moon or comet got too close and was torn apart by Saturn’s gravity.”

The voyage between the rings will also potentially provide some new insights into the workings of the disks present at the formation of all solar systems.

“The rings can teach us about the physics of disks, which are huge rings floating majestically and with synchronicity  around the new sun,” Niebur said.  “That said, the rings of Saturn have a very active regime, with particles and meteorites and micrometeorites smacking into each other.  It’s an amazing environment and has direct relevance to the nebular model of planetary formation.”

The view above was acquired at a distance of approximately 750,000 miles (1.2 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 140 degrees. . The distance to Tethys was about 930,000 miles (1.5 million kilometers).

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the mission for NASA and the imaging operations center is based at the Space Science Institute in Boulder, Colorado.

 

Polar region of Saturn, with tumultuous cloud pattern. A bizarre six-sided feature encircling the north pole of Saturn was identified earlier using the visual and infrared mapping spectrometer on NASA’s Cassini spacecraft.(NASA/JPL-Caltech/Space Science Institute)

Among the areas of greatest interest during the final descent are the turbulent clouds on the North Pole of Saturn.  Cassini captured this view of the pole on April 26, 2017 – the day it began its grand finale — as it approached the planet for its first dive through the gap between the planet and its rings.

Although the pole is still bathed in sunlight at present, northern summer solstice on Saturn occurred on May 24, 2017, bringing the maximum solar illumination to the north polar region. Now the Sun begins its slow descent in the northern sky, which eventually will plunge the north pole into Earth-years of darkness. Cassini’s long mission at Saturn enabled the spacecraft to see the Sun rise over the north, revealing that region in great detail for the first time.

This view looks toward the sunlit side of the rings from about 44 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers.

Saturn boasts some unique features in its atmosphere. When the Voyager missions traveled to the planet in the early 1980s, it imaged a hexagon-shaped cloud formation near the north pole.

Twenty-five years later, infrared images taken by Cassini revealed the storm was still spinning, powered by jet streams that push it to speeds of about 220 mph (100 meters per second). At 15,000 miles (25,000 km) across, the long-lasting storm could easily contain an Earth or two.

The recent view was obtained at a distance of approximately 166,000 miles (267,000 kilometers) from Saturn.

But because Saturn is a gas giant and has no defined surface per se, it’s difficult to describe exactly how far from the planet Cassini might be traveling at any given time.

On the final orbit, Cassini will plunge into Saturn’s atmosphere, sending back new and unique science to the very end. After losing contact with Earth, the spacecraft will burn up like a meteor, becoming part of the planet itself.

Facebooktwittergoogle_plusredditpinterestlinkedinmail