How Will We Know What Exoplanets Look Like, and When?

Facebooktwittergoogle_plusredditpinterestlinkedinmail

An earlier version of this article was accidently published last week before it was completed.  This is the finished version, with information from this week’s AAS annual conference.

This image of a pair of interacting galaxies called Arp 273 was released to celebrate the 21st anniversary of the launch of the NASA/ESA Hubble Space Telescope. The distorted shape of the larger of the two galaxies shows signs of tidal interactions with the smaller of the two. It is thought that the smaller galaxy has actually passed through the larger one.
This image of a pair of interacting galaxies called Arp 273 was released to celebrate the 21st anniversary of the launch of the NASA/ESA Hubble Space Telescope. The distorted shape of the larger of the two galaxies shows signs of tidal interactions with the smaller of the two. It is thought that the smaller galaxy has actually passed through the larger one.

Let’s face it:  the field of exoplanets has a significant deficit when it comes to producing drop-dead beautiful pictures.

We all know why.  Exoplanets are just too small to directly image, other than as a miniscule fraction of a pixel, or perhaps some day as a full pixel.  That leaves it up to artists, modelers and the travel poster-makers of the Jet Propulsion Lab to help the public to visualize what exoplanets might be like.  Given the dramatic successes of the Hubble Space Telescope in imaging distant galaxies, and of telescopes like those on the Cassini mission to Saturn and the Mars Reconnaissance Orbiter, this is no small competitive disadvantage.  And this explains why the first picture of this column has nothing to do with exoplanets (though billions of them are no doubt hidden in the image somewhere.)

The problem is all too apparent in these two images of Pluto — one taken by the Hubble and the other by New Horizons telescope as the satellite zipped by.

image

Pluto image taken by Hubble Space Telescope (above) and close up taken by New Horizons in 2015. (NASA)
Pluto image taken by Hubble Space Telescope (above) and close up taken by New Horizons in 2015. (NASA)

Pluto is about 4.7 billion miles away.  The nearest star, and as a result the nearest possible planet, is 25 trillion miles  away.  Putting aside for a minute the very difficult problem of blocking out the overwhelming luminosity of a star being cross by the orbiting planet you want to image,  you still have an enormous challenge in terms of resolving an image from that far away.

While current detection methods have been successful in confirming more than 2,000 exoplanets in the past 20 years (with another 2,000-plus candidates awaiting confirmation or rejection),  they have been extremely limited in terms of actually producing images of those planetary fireflies in very distant headlights.  And absent direct images — or more precisely, light from those planets — the amount of information gleaned about the chemical makeup of their atmospheres  as been limited, too.

But despite the enormous difficulties, astronomers and astrophysicist are making some progress in their quest to do what was considered impossible not that long ago, and directly image exoplanets.

In fact, that direct imaging — capturing light coming directly from the sources — is pretty uniformly embraced as the essential key to understanding the compositions and dynamics of exoplanets.  That direct light may not produce a picture of even a very fuzzy exoplanet for a very long time to come, but it will definitely provide spectra that scientists can read to learn what molecules are present in the atmospheres, what might be on the surfaces and as a result if there might be signs of life.

This diagram illustrates how astronomers using NASA's Spitzer Space Telescope can capture the elusive spectra of hot-Jupiter planets. Spectra are an object's light spread apart into its basic components, or wavelengths. By dissecting light in this way, scientists can sort through it and uncover clues about the composition of the object giving off the light. To obtain a spectrum for an object, one first needs to capture its light. Hot-Jupiter planets are so close to their stars that even the most powerful telescopes can't distinguish their light from the light of their much brighter stars. But, there are a few planetary systems that allow astronomers to measure the light from just the planet by using a clever technique. Such "transiting" systems are oriented in such a way that, from our vantage point, the planets' orbits are seen edge-on and cross directly in front of and behind their stars. In this technique, known as the secondary eclipse method, changes in the total infrared light from a star system are measured as its planet transits behind the star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone. To capture a spectrum of the planet, Spitzer must observe the system twice. It takes a spectrum of the star together with the planet (first panel), then, as the planet disappears from view, a spectrum of just the star (second panel). By subtracting the star's spectrum from the combined spectrum of the star plus the planet, it is able to get the spectrum for just the planet (third panel). This ground-breaking technique was used by Spitzer to obtain the first-ever spectra of two planets beyond our solar system, HD 209458b and HD 189733b. The results suggest that the hot planets are socked in with dry clouds high up in the planet's stratospheres. In addition, HD 209458b showed hints of silicates, indicating those high clouds might be made of very fine sand-like particles.
This diagram illustrates how astronomers using NASA’s Spitzer Space Telescope can capture the elusive spectra of hot-Jupiter planets. Spectra are an object’s light spread apart into its basic components, or wavelengths. By dissecting light in this way, scientists can sort through it and uncover clues about the composition of the object giving off the light. (NASA/JPL-Caltech)

There has been lots of technical and scientific debate about how to capture that light, as well as debate about how to convince Congress and NASA to fund the search.  What’s more, the exoplanet community has a history of fractious internal debate and competition that has at times undermined its goals and efforts, and that has been another hotly discussed subject.  (The image of a circular firing squad used to be a pretty common one for the community.)

But a seemingly much more orderly strategy has been developed in recently years and was on display at the just-completed American Astronomical Society annual meeting in Florida.  The most significant breaking news was probably that NASA has gotten additional funds to support a major exoplanet direct imaging mission in the 2020s, the Wide Field Infrared Survey Telescope (WFIRST), and that the agency is moving ahead with a competition between four even bigger exoplanet or astrophysical missions for the 2030s. The director of NASA Astrophysics, Paul Hertz, made the formal announcements during the conference, when he called for the formation of four Science and Technology Definition Teams to assess in great detail the potentials and plausibilities of the four possibilities.

Paul Hertz, Director of the Astrophysics Division of NASA's Science Mission Directorate.
Paul Hertz, Director of the Astrophysics Division of NASA’s Science Mission Directorate.

Putting it into a broader perspective, astronomer Natalie Batalha, science lead for the Kepler Space Telescope, told a conference session on next-generation direct imaging that  “with modern technology, we don’t have the capability to image a solar system analog.”  But, she said, “that’s where we want to go.”

And the road to discovering exoplanets that might actually sustain life may well require a space-based telescope in the range of eight to twelve meters in radius, she and others are convinced.  Considering that a very big challenge faced by the engineers of the James Webb Space Telescope (scheduled to launch in 2018) was how to send a 6.5 meter-wide mirror into space, the challenges (and the costs) for a substantially larger space telescope will be enormous.

We will come back in following post to some of these plans for exoplanet missions in the decades ahead, but first let’s look at a sample of the related work done in recent years and what might become possible before the 2020s.  And since direct imaging is all about “seeing” a planet — rather than inferring its existence through dips in starlight when an exoplanet transits, or the wobble of a sun caused by the presence of  an orbiting ball of rock (or gas)  — showing some of the images produced so far seems appropriate.  They may not be breath-taking aesthetically, but they are remarkable.

There is some debate and controversy over which planets were the first to be directly imaged. But all agree that a major breakthrough came in 2008 with the imaging of the HR8799 system via ground-based observations.

NASA/JPL-Caltech/Palomar Observatory - http://www.nasa.gov/topics/universe/features/exoplanet20100414-a.html This image shows the light from three planets orbiting a star 120 light-years away. The planets' star, called HR8799, is located at the spot marked with an "X." This picture was taken using a small, 1.5-meter (4.9-foot) portion of the Palomar Observatory's Hale Telescope, north of San Diego, Calif. This is the first time a picture of planets beyond our solar system has been captured using a telescope with a modest-sized mirror -- previous images were taken using larger telescopes. The three planets, called HR8799b, c and d, are thought to be gas giants like Jupiter, but more massive. They orbit their host star at roughly 24, 38 and 68 times the distance between our Earth and sun, respectively (Jupiter resides at about 5 times the Earth-sun distance).
This 2010 image shows the light from three planets orbiting HR8799, 120 light-years away.  The three planets, called HR8799b, c and d, are thought to be gas giants like Jupiter, but more massive. (NASA/JPL-Caltech/Palomar Observatory)

First, three Jupiter-plus gas giants were identified using the powerful Keck and Gemini North infrared telescopes on Mauna Kea in Hawaii by a team led by Christian Marois of the National Research Council of Canada’s Herzberg Institute of Astrophysics. That detection was followed several years later the discovery of a fourth planet and then by the release of the surprising image above, produced with the quite small (4.9 foot) Hale telescope at the Palomar Observatory outside of San Diego.

As is the case for all planets directly imaged, the “pictures” were not taken as we would with our own cameras, but rather represent images produced with information that is crunched in a variety of necessary technical ways before their release.  Nonetheless, they are images in a way similar the iconic Hubble images that also need a number of translating steps to come alive.

Because light from the host star has to be blocked out for direct imaging to work, the technique now identifies only planets with very long orbits. In the case of HR8799, the planets orbit respectively at roughly 24, 38 and 68 times the distance between our Earth and sun.  Jupiter orbits at about 5 times the Earth-sun distance.

In the same month as the HR8799 announcement, another milestone was made public with the detection of a planet orbiting the star Formalhaut.  That, too, was done via direct imagining, this time with the Hubble Space Telescope.

The Hubble images were taken with the Space Telescope Imaging Spectrograph in 2010 and 2012. This false-color composite image, taken with the Hubble Space Telescope, reveals the orbital motion of the planet Fomalhaut b. Based on these observations, astronomers calculated that the planet is in a 2,000-year-long, highly elliptical orbit. The planet will appear to cross a vast belt of debris around the star roughly 20 years from now. If the planet's orbit lies in the same plane with the belt, icy and rocky debris in the belt could crash into the planet's atmosphere and produce various phenomena. The black circle at the center of the image blocks out the light from the bright star, allowing reflected light from the belt and planet to be photographed. Credit: NASA, ESA, and P. Kalas (University of California, Berkeley and SETI Institute)
The Hubble images the the star Formalhaut and planet Formalhaut b were taken with the Space Telescope Imaging Spectrograph in 2010 and 2012. This false-color composite image reveals the orbital motion of the Fomalhaut b. Based on these observations, astronomers calculated that the planet is in a 2,000-year-long, highly elliptical orbit. The black circle at the center of the image blocks out light from the very bright star, allowed reflected light from the belt and planet to be captured.  Credit: NASA, ESA, and P. Kalas (University of California, Berkeley and SETI Institute)

Signs of the planet were first detected in 2004 and 2006 by a group headed by Paul Kalas at the University of California, Berkeley, and they made the announcement in 2008.  The discovery was confirmed several years later and tantalizing planetary dynamics began to emerge from the images (all in false color.) For instance, the planet appears to be on a path to cross a vast belt of debris around the star roughly 20 years from now.  If the planet’s orbit lies in the same plane with the belt, icy and rocky debris could crash into the planet’s atmosphere and cause interesting damage.

The region around Fomalhaut’s location is black because astronomers used a coronagraph to block out the star’s bright glare so that the dim planet could be seen. This is essential since Fomalhaut b is 1 billion times fainter than its star. The radial streaks are scattered starlight. Like all the planets detected so far using some form of direct imaging,  Fomalhaut b if far from its host star and completes an orbit every 872 years.

Adaptive optics of the Gemini Planet Imager, at the Gemini South Observatory in Chile, has been successful in imaging exoplanets as well.  The GPI grew out of a proposal by the Center for Adaptive Optics, now run by the University of California system, to inspire and see developed innovative optical technology.  Some of the same breakthroughs now used in treating human eyes found their place in exoplanet astronomy.

 

Discovery image of 51 Eri b with the Gemini Planet Imager taken in the near-infrared light on December 18, 2014. The bright central star has been mostly removed by a hardware and software mask to enable the detection of the exoplanet one million times fainter. Credits: J. Rameau (UdeM) and C. Marois (NRC Herzberg).
Discovery image of 51 Eri b with the Gemini Planet Imager taken in the near-infrared light on December 18, 2014. The bright central star has been mostly removed by a hardware and software mask to enable the detection of the exoplanet one million times fainter. Credits: J. Rameau (UdeM) and C. Marois (NRC Herzberg).

The Imager, which began operation in 2014, was specifically created to discern and evaluate dim, newer planets orbiting bright stars using a different kind of direct imaging. It is adept at detecting young planets, for instance, because they still retain heat from their formation, remain luminous and visible. Using the GPI to study the area around the y0ung (20-million-year-old) star 51 Eridiani, the team made their first exoplanet discovery in 2014.

By studying its thermal emissions, the team gained insights into the planet’s atmospheric composition and found that — much like Jupiter’s — it is dominated by methane.  To date, methane signatures have been weak or absent in directly imaged exoplanets.

James Graham, an astronomer at the University of California, Berkeley, is the project leader for a three-year GPI survey of 600 stars to find young gas giant planets, Jupiter-size and above.

“The key motivation for the experiment is that if you can detect heat from the planet, if you can directly image it, then by using basic science you can learn about formation processes for these planets.”  So by imaging the planets using these very sophisticated optical advances, scientists go well beyond detecting exoplanets to potentially unraveling deep mysteries (even if we still won’t know what the planets “look like” from an image-of-the-day perspective.

The GPI has also detected a second exoplanet, shown here at different stages of its orbit:

 

The animation is a series of images taken between November 2013 and April 2015 with the Gemini Planet Imager (GPI) on the Gemini South telescope in Chile, and shows the exoplanet β Pictoris b, which is more than 60 lightyears from Earth. The star is the black area on the left edge of the frame and is hidden by the Gemini Planet Imager’s coronagraph. We are looking at the planet’s orbit almost edge-on, with the planet closer to the Earth than the star. (M. Millar-Blanchaer, University of Toronto; F. Marchis, SETI Institute)
The animation is a series of images taken between November 2013 and April 2015 with the Gemini Planet Imager (GPI) on the Gemini South telescope in Chile, and shows the exoplanet β Pictoris b, which is more than 60 lightyears from Earth. The star is the black area on the left edge of the frame and is hidden by the Gemini Planet Imager’s coronagraph. (M. Millar-Blanchaer, University of Toronto; F. Marchis, SETI Institute)

A next big step in direct imaging of exoplanets will come with the launch of the James Webb Space Telescope in 2018.  While not initially designed to study exoplanets — in fact, exoplanets were just first getting discovered when the telescope was under early development — it does now include a coronagraph which will substantially increase its usefulness in imaging exoplanets.

As explained by Joel Green, a project scientist for the Webb at the Space Telescope Science Institute in Baltimore, the new observatory will be able to capture light — in the form of infrared radiation– that will be coming from more distant and much colder environments than what Hubble can probe.

“It’s sensitive to dimmer things, smaller planets that are more earth-sized.  And because it can see fainter objects, it will be more help in understanding the demographics of exoplanets.  It uses the infrared region of the spectrum, and so it can look better into the cloud levels of the planets than any telescope so far and see deeper.”

James Webb Space Telescope mirror being inspected at Goddard Space Flight Center, as it nears completion.  The powerful, sophisticated and long-awaited telescope is scheduled to launch in 2018.
James Webb Space Telescope mirror being inspected at Goddard Space Flight Center, as it nears completion. The powerful, sophisticated and long-awaited telescope is scheduled to launch in 2018.

These capabilities and more are going to be a boon to exoplanet researchers and will no doubt advance the direct imaging effort and potentially change basic understandings about exoplanets.  But it is not expected produce gorgeous or bizarre exoplanet pictures for the public, as Hubble did for galaxies and nebulae.  Indeed, unlike the Hubble — which sees primarily in visible light —  Webb sees in what Green said is, in effect, night vision.   And so researchers are still working on how they will produce credible images using the information from Webb’s infrared cameras and translating them via a color scheme into pictures for scientists and the public.

Another compelling exoplanet-imaging technology under study by NASA is the starshade, or external occulter, a metal disk in the shape of a sunflower that might some day be used to block out light from host stars in order to get a look at faraway orbiting planets.  MIT’s Sara Seager led a NASA study team that reported back on the starshade last year in a report that concluded it was technologically possible to build and launch, and would be scientifically most useful.  If approved, the starshade — potentially 100 feet across — could be used with the WFIRST telescope in the 2020s.  The two components would fly far separately, as much as 35,000 miles away from each other, and together could produce breakthrough exoplanet direct images.

An artist's depiction of a sunflower-shaped starshade that could help space telescopes find and characterize alien planets. Credit: NASA/JPL/Caltec
An artist’s depiction of a sunflower-shaped starshade that could help space telescopes find and characterize alien planets.  Credit: NASA/JPL/Caltech

Here is a link to an animation of the starshade being deployed: http://planetquest.jpl.nasa.gov/video/15

The answer, then, to the question posed in the title to this post — “How Will We Know What Exoplanets Look Like, and When?”– is complex, evolving and involves a science-based definition of what “looking like” means.  It would be wonderful to have images of exoplanets that show cloud formations, dust and maybe some surface features, but “direct imaging” is really about something different.  It’s about getting light from exoplanets that can tell scientists about the make-up of those exoplanets and their atmospheres, and ultimately that’s a lot more significant than any stunning or eerie picture.

And with that difference between beauty and science in mind, this last image is one of the more striking ones I’ve seen in some time.

Moon glow over Las Campanas Observatory, run by the Carnegie Institution of Science, in Chile. (Yuri Beretsky)
Moon glow over Las Campanas Observatory, operated by the Carnegie Institution of Science, in Chile. (Yuri Beretsky)

It was taken at the Las Campanas Observatory in Chile last year, during a night of stargazing.  Although the observatory is in the Atacama Desert, enough moisture was present in the atmosphere to create this lovely moon-glow.

But working in the observatory that night was Carnegie’s pioneer planet hunter Paul Butler, who uses the radial velocity method to detect exoplanets.  But to do that he needs to capture light from those distant systems.  So the night — despite the beautiful moon-glow — was scientifically useless.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Exoplanet Era

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Many, and perhaps most stars have solar systems with numerous planets, as in this artist rendering of Kepler 11. (NASA)

Throughout the history of science, moments periodically arrive when new fields of knowledge and discovery just explode.

Cosmology was a kind of dream world until Edwin Hubble established that the universe was expanding, and doing so at an ever-faster rate. A far more vibrant and scientific discipline was born. On a more practical level, it was only three decades ago that rudimentary personal computers were still a novelty, and now computer-controlled, self-driving cars are just on the horizon. And not that long ago, genomics and the mapping of the human genome also went into hyperspeed, and turned the mysterious into the well known.

Most frequently, these bursts of scientific energy and progress are the result of technological innovation, coupled with the far-seeing (and often lonely and initially unsupported) labor and insights of men and women who are simply ahead of the curve.

We are at another of those scientific moments right now, and the subject is exoplanets – the billions (or is it billions of billions?) of planets orbiting stars other than our sun.

The 20th anniversary of the breakthrough discovery of the first exoplanet orbiting a sun, 51 Pegasi B, is being celebrated this month with appropriate fanfare. But while exoplanet discovery remains active and planet hunters increasingly skilled and inventive, it is no longer the edgiest frontier.

Now, astronomers, astrophysicists, astrobiologists, planetary scientists, climatologists, heliophysicists and many more are streaming into a field made so enticing, so seemingly fertile by that discovery of the apparent ubiquitiousness of exoplanets.

The new goal: Identifying the most compelling mysteries of some of those distant planets, and gradually but inexorably finding ever-more inventive ways to solve them. This is a thrilling task on its own, but the potential prize makes it into quite an historic quest. Because that prize is the identification of extraterrestrial life.

The presence of life beyond Earth is something that humans have dreamed about forever – with a seemingly intuitive sense that there just had to be other planets out there, and that it made equal sense that some of them supported life. Hollywood was on to this long ago, but now we have the beginning technology and fast-growing knowledge to transform that intuitive sense of life out there into a working science.

The thin gauzy rim of the planet in foreground is an illustration of its atmosphere. (NASA’s Goddard Space Flight Center)
The thin gauzy rim of the planet in foreground is an illustration of its atmosphere. (NASA’s Goddard Space Flight Center)

Already the masses and orbits of several thousand exoplanets have been measured. Some planets have been identified as rocky like Earth (as opposed to gaseous like Jupiter.) Some have been found in what the field calls “habitable zones” – regions around distant suns where liquid water could plausibly run on a surface –as it does on Earth and once did on Mars. And some exoplanets have even been determined to have specific compounds – carbon dioxide, water, methane, even oxygen – in their atmospheres.

This and more is what I will be exploring, describing, hopefully bringing to life through an on-going examination of this emerging field of science and the inventive scientists working to understand planets and solar systems many light-years away. Theirs is a daunting task for sure, and progress may be halting. But many scientists are convinced that the goal is entirely within reach – that based on discoveries already made, the essential dynamics and characteristics of very different kinds of planets and solar systems are knowable. Thus the name of this offering: “Many Worlds.”

Artist rendering of early stages of planet formation in the swirl and debris of the disk of a new star. (NASA/JPL-Caltech)
Artist rendering of early stages of planet formation in the swirl and debris of the disk of a new star. (NASA/JPL-Caltech)

I was first introduced to, and captivated by, this cosmic search in a class for space journalists taught by scientists including Sara Seager, a dynamic young professor of physics and planetary science at M.I.T., a subsequently-selected MacArthur “genius,” and a pioneer in the field not of discovering exoplanets, but of characterizing them and their atmospheres. And based on her theorizing and the observations of many others, she was convinced that this characterizing would lead to the discovery of very distant extraterrestrtial life, or at least to the discovery of planetary signatures that make the presence of life highly probable. Just this week, she predicted the discovery could take place within a decade.

It was in 2010 that she began her book “Exoplanet Atmospheres” with the statement: “A new era in planetary science is upon us.” I would take it further: A new era has arrived in the human drive to understand the universe and our place in it. Exoplanets and their solar systems are a magnet to young scientists, says Paul Hertz, the head of NASA’s Astrophysics Division. Almost a third of the papers presented at astronomy conferences these days involve exoplanets, he said, and “it’s hard to find scientists in our field under thirty not working on exoplanets.” Go to a major geology conference, or a planetary science meeting, and much the same will be true.

And why not? I think of this moment as akin to the time in the 17th century when early microscopes revealed a universe of life never before seen. So many new questions to ask, so many discoveries to make, so much exciting and ultimately world-changing science ahead.

But the challenge of characterizing exoplanets and some day identifying signs of life does not lend itself to the kind of solitary or small group work that characterized microbiology (think the breakthrough NASA Kepler mission and the large team needed to make it reality and to analyze its results.) Not only does it require costly observatories and telescopes and spectrometers, but it also needs the expertise that scientists from different fields can bring to the task – rather like the effort to map the human genome.

That is the organizing logic of astrobiology – the more general hunt for life elsewhere in our solar system and far beyond, alongside the search for clues into how life may have started on our planet. NASA is eager to encourage that same spirit in the more specific but nonetheless equally sprawling exploration of exoplanets, their atmospheres, their physical makeup, their climates, their suns, their neighborhoods.

The Earth alongside “Super-Earth-” sized exoplanets identified with the Kepler Space Telescope. (NASA Ames / JPL-Caltech)
The Earth alongside “Super-Earth-” sized exoplanets identified with the Kepler Space Telescope. (NASA Ames / JPL-Caltech)

The result was the creation this summer of the the Nexus for Exoplanet System Science (NExSS), a group that will be led by 17 teams of scientists from around the country already working on some aspect of the rich exoplanet opportunity. The group was selected from teams that had applied for grants from NASA’s Astrobiology Institute, an arm of its larger NASA Astrobiology Program, as well as other NASA programs in the Planetary Sciences, Astrophysics and Astronomy divisions.

Their mandate is to spark new approaches in the effort to understand exoplanets by identifying areas without consensus in the broader community, and then fostering collaborations here and abroad to address those issues. “Many Worlds” grew out of the NExSS initiative, and will chronicle and explain the efforts of some team members as they explore how exo-plants and exo-creatures might be detected; what can be learned from afar about the surfaces and cores of exoplanets and how both play into the possibility of faraway life; the presence and dynamics of exo-weather, what we can learn about exoplanets from our own planet and solar system, and so much more.

A few of the teams are small, but many are quite large, established and mature – perhaps most especially the Virtual Planetary Laboratory at the University of Washington, and run by Victoria Meadows. Since 2001, the virtual lab has collaborated with researchers representing many disciplines, and from as many as 20 institutions, to understand what factors might best predict whether an exoplanet harbors life, using Earth as a model.

But just as I will be venturing beyond NExSS in my writing about this new era of exploration, so too will NExSS be open to the involvement of other scientists in the field. The original group has been tasked with identifying an agenda of sorts for NASA exoplanet missions and efforts ahead. But its aim is to be inclusive and its conclusions and recommendations will only be as useful and important as the exoplanet community writ large determines them to be.

The Carina Nebula, one of many regions where stars come together and planets later form made out of the surrounding dust, gas and later rock. (NASA, ESA, and the Hubble SM4 ERO Team)
The Carina Nebula, one of many regions where stars come together and planets later form made out of the surrounding dust, gas and later rock. (NASA, ESA, and the Hubble SM4 ERO Team)

This is a moment pregnant with promise. Systematically investigating exoplanets and their environs is an engine for discovery and a pathway into that largest question of whether or not we are alone in the universe.

Will scientists some day find worlds where donkeys talk and pigs can fly (as at least one “everything is possible” philosopher has posited)? Unlikely.

But just as microscopes and the scientists using them led to the science of microbiology and most of modern medicine, so too are our orbiting observatories, Earth-based telescopes and the scientists who analyze their results are regularly opening up a world of myriad and often surprising marvels.

Facebooktwittergoogle_plusredditpinterestlinkedinmail