2.5 Billions Years of Earth History in 100 Square Feet

Scalding hot water from an underground thermal spring creates an iron-rich environment similar to what existed on Earth 2.5 billion years ago. (Nerissa Escanlar)

Along the edge of an inlet on a tiny Japanese island can be found– side by side – striking examples of conditions on Earth some 2.4 billion years ago, then 1.4 billion years ago and then the Philippine Sea of today.

First is a small channel with iron red, steaming and largely oxygen-free water – filled from below with bubbling liquid above 160 degrees F. This was Earth as it would have existed, in a general way, as oxygen was becoming more prevalent on our planet some 2.4 billion years ago. Microbes exist, but life is spare at best.

Right next to this ancient scene is region of green-red water filled with cyanobacteria – the single-cell creatures that helped bring masses of oxygen into our atmosphere and oceans.  Locals come to this natural “onsen” for traditional hot baths, but they have to make their way carefully because the rocky floor is slippery with green mats of the bacteria.

And then there is the Philippine Sea, cool but with spurts of warm water shooting up from below into the cove.

All of this within a area of maybe 100 square feet.

It is a unique hydrothermal scene, and one recently studied by two researchers from the Earth-Life Science Institute in Tokyo – microbiologist Shawn McGlynn and ancient virus specialist Tomohiro Mochizuki.

They were taking measurements of temperature, salinity and more, as well as samples of the hot gas and of microbial life in the iron-red water. Cyanobacterial mats are collected in the greener water, along with other visible microbe worlds.

Shawn McGlynn, associate professor at the Earth Life Science Institute in Tokyo scoops some iron-rich water from a channel on Shikine-jima Island, 100 miles from Tokyo. (Nerissa Escanlar)

The scientific goals are to answer specific questions – are the bubbles the results of biology or of geochemical processes? What are the isotopic signatures of the gases? What microbes and viruses live in the super-hot sections? And can cyanobacteria and iron co-exist?

All are connected, though, within the broad scientific effort underway to ever more specifically understand conditions on Earth through the eons, and how those conditions can help answer fundamental questions of how life might have begun.

“We really don’t know what microbiology looked like 2.5 billion or 1.5 billion years ago,” said McGlynn, “But this is a place we can go where we can try to find out. It’s a remarkable site for going back in time.”

In particular, there are not many natural environments with high levels of dissolved iron like this site. Yet scientists know from the rock record that there were periods of Earth history when the oceans were similarly filled with iron.

Mochizuki elaborated: “We’re trying to figure out what was possible chemically and biologically under certain conditions long ago.

“If you have something happening now at this unusual place – with the oxygen and iron mixing in the hot water to turn the water red – then there’s a chance that what we find today was there as well billions of years ago. ”

Tomohiro Mochizuki at collecting samples directly from the spot where 160 degree F water pushes up through the rock at Jinata hot spring. (Nerissa Escanlar)

The Jinata hot springs, as the area is known, is on Shikine-jima Island, one of the furthest out in the Izu chain of islands that starts in Tokyo Bay. More than 100 miles from Tokyo itself, Shikine-jima is nonetheless part of Tokyo Prefecture.

The Izu islands are all volcanic, created by the underwater movements of the Philippine and Pacific tectonic plates. That boundary remains in flux, and thus the hot springs and volcanoes. The terrain can be pretty rugged: in English, Jinata translates to something like Earth Hatchet, since the hot spring is at the end of a path through what does look like a rock rising that had been cut through with a hatchet.

Hot springs and underwater thermal vents have loomed large in thinking about origins of life since it became known in recent decades that both generally support abundant life – microbial and larger – and supply nutrients and even energy in the form of electricity from vents and electron transfers from chemical reactions.

And so not surprisingly, vents are visited and sampled not infrequently by ELSI scientists. McGlynn was on another hydrothermal vent field trip in Iceland over the summer with, among others, ELSI Origins Network fellow Donato Gionovelli and ELSI principal investigator and electrochemist Ruyhei Nakamura..

McGlynn’s work is focused on how electrons flow between elements and compounds, a transfer that he sees as a basic architecture for all life. With so many compelling flows occurring in such a small space, Jinata is a superb laboratory.

The volcanic Izu island chain, starting in Tokyo Bay and going out into the Philippine Sea.

For Mochizuki, the site turned out to be exciting but definitely not a goldmine. That’s because his speciality is viruses that live at very high temperatures, and even the bubbling hot spring in the iron trench measured about 73 degrees C (163 degrees F.) The viruses he incubates live at temperatures between closer to 90 C (194 F), not far from the boiling point.

His goal in studying these high-temperature (hyperthermophilic) viruses is to look back to the earliest days of life forming on Earth, using viruses as his navigators. Since life is thought by many scientists to have begun in a super hot RNA world, Mochizuki wants to look at viruses still living in those conditions today to see what they can tell us.

So far, he explained, what they have told us is that the RNA in the earliest lifeforms on Earth – denizens of the Archaean kingdom – did not have viruses. And this is puzzling.

So Mochizuki is always interested in going to sample hot springs and thermal vents to collect high temperature viruses, and to look for surprises.

Though the bubbling waters were so hot that both researchers had difficulty standing in the water with boots on and holding their collection vials with gloves, it was not hot enough for what Mochizuki is after. But that certainly didn’t stop him from taking as many samples as he could, including some for other ELSI researchers doing different work but still needing interesting samples.

Researchers often need to be inventive on field trips, and that was certainly the case at Jinata. When McGlynn first tried to sample the bubbles at the scalding spring, his hands and feet quickly felt on fire and he had to retreat.

To speed the process, he and Mochizuki built a funnel out of a large plastic water bottle, a device that allowed the bubbles to be collected and directed into the sample vial without the gloved hands being so close to the heat.   The booted feet, however, remained a problem and the heat just had to be endured.

Nearby the steaming bubbling of the hot spring were collections of what appeared to be fine etchings on the bottom of the red channel. These faint designs, McGlynn explained, were the product of a microbe that makes it’s way along the bottom and deposits lines of processed iron oxide as it goes. So while the elegant designs are not organic, the creatures that creates them surely is.

“Touch the area and the lines go poof,” McGlynn said. “That’s because they’re just the iron oxide; nothing more. Next to us is the water with much less iron and a lot more oxygen, and so there are blooms of (green) cyanobacteria. Touch them and they don’t go poof, they stick to your hand because they’re alive.”

Filaments created by microbes as they deposit iron oxide at the bottom of small channel. (Marc Kaufman)

McGlynn also collects some of the the poofs to get at the microbes making the unusual etchings. It may be a microbe never identified before.

As a microbiologist, he is of course interested in identifying and classifying microbes. He initially thought the microbes in the iron channel would be anaerobic, but he found that even tiny amount of oxygen making their way into the springs from the atmosphere made most aerobic, or possibly anaerobes capable of surviving with oxygen (which usually is toxic to them.)

He also found that laboratory studies that found cyanobacteria would not flourish in the presence of iron were not accurate in nature, or certainly were not accurate at Jinata onsen.

But it is that flow of electrons that really drives McGlynn – he even dreams of them at night, he told me.

One of the goals of his work, and that of his colleague and sometimes collaborator at ELSI, geobiochemist Yuichiro Ueno, is to answer some of the outstanding questions about that flow of electrons (electricity) from the core of the Earth. The energy transits through the mantle, to the surface and then often is in contact with the biosphere (all living things) before it enters the atmosphere and sometimes disappears into space.

He likened the process to the workings of a gigantic battery, with the iron core as the cathode and the oxygen in the atmosphere as the anode. Understanding the chemical pathways traveled by the electrons today, he is convinced, will tell a great deal about conditions on the early Earth as well.

It’s all important research in what is a chipping away of the many unknowns in the stories of the origins of Earth and the origin of life.

A boundary between where the very hot iron-rich water meets and the less hot water with thriving cyanobacteria colonies at Jinata.

The field work also illustrated the hit-and-miss nature of these kind of outings. While McGlynn has not come up with Jinata surprises or novel understandings, he was so taken with the setting that he wondered if a seemly empty building not too far from the site could be turned into an ELSI marine lab.

And while Mochizuki did not find sufficiently hot water for his work, he might still be coming back to the island, or others nearby. That’s because he learned of a potentially much hotter spring at a spot where the sea hits one of the island’s steep cliffs – a site that requires boat access that was unsafe in the choppy waters during this particular visit.

In addition, McGlynn and Mochizuki did make some surprising discoveries, though they didn’t involve microbes, electron transfer or viruses.

During a morning visit to a different hot spring, they came across a team of what turned out to be officials of the Izu islands – all dressed in suits and ties. They were visiting Shikine-jima as part of a series of joint islands visit to assess economic development opportunities.

The officials were intrigued to learn what the scientists were up to, and made some suggestions of other spots to sample. One was an island occupied by Japanese self-defense forces and generally closed to outsiders. But the island is known to have areas of extremely hot water just below the surface of the land, sometimes up to 100 C (212 F.)

The officials gave their cards and told the scientists to contact them if they wanted to get onto that island for sampling. And as for the official from Shikine-jima, he was already thinking big.

“It would be a very good thing,” he said, “if you found the origin of life on our island.

Marc Kaufman
Marc Kaufman is the author of two books about space: "Mars Up Close: Inside the Curiosity Mission” and “First Contact: Scientific Breakthroughs in the Search for Life Beyond Earth.” He is also an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer. While the “Many Worlds” column is supported and informed by NASA’s Astrobiology Program, any opinions expressed are the author’s alone.

To contact Marc, send an email to marc.kaufman@manyworlds.space.

Could High-Energy Radiation Have Played an Important Role in Getting Earth Ready For Life?


A version of this article first appeared in Astrobiology Magazine, www.astrobio.net.

The fossil remains of a natural nuclear reactor in Oklo, Gabon.  It entered a fission state some 2 billion years ago, and so would not have been involved in any origin of life scenario.  But is a proof of concept that these natural reactors have existed and some were widespread on earth Earth.  It is but one possible source of high energy particles on early Earth. The yellow rock is uranium oxide. (Robert D. Loss, Curtin University, Australia)

Life on early Earth seems to have begun with a paradox: while life needs water as a solvent, the essential chemical backbones of early life-forming molecules fall apart in water. Our universal solvent, it turns out, can be extremely corrosive.

Some have pointed to this paradox as a sign that life, or the precursor of life, originated elsewhere and was delivered here via comets or meteorites. Others have looked for solvents that could have the necessary qualities of water without that bond-breaking corrosiveness.

In recent years the solvent often put forward as the eligible alternative to water is formamide, a clear and moderately irritating liquid consisting of hydrogen, carbon, nitrogen and oxygen. Unlike water, it does not break down the long-chain molecules needed to form the nucleic acids and proteins that make up life’s key initial instruction manual, RNA. Meanwhile it also converts via other useful reactions into key compounds needed to make nucleic acids in the first place.

Although formamide is common in star-forming regions of space, scientists have struggled to find pathways for it to be prevalent, or even locally concentrated, on early Earth. In fact, it is hardly present on Earth today except as a synthetic chemical for companies.

New research presented by Zachary Adam, an earth scientist at Harvard University, and Masashi Aono, a complex systems scientist at Earth-Life Science Institute (ELSI) at Tokyo Institute of Technology, has produced formamide by way of a surprising and reproducible pathway: bombardment with radioactive particles.


In a room fitted for cobalt-60 testing on the campus of the Tokyo Institute of Technology, a team of researchers gather around the (still covered) cobalt-60 and vials of the chemicals they were testing. The ELSI scientists are (from left) Masashi Aono,  James Cleaves, Zachary Adam and Riquin Yi.  (Isao Yoda)

The two and their colleagues exposed a mixture of two chemicals known to have existed on early Earth (hydrogen cyanide and aqueous acetonitrile) to the high-energy particles emitted from a cylinder of cobalt-60, an artificially produced radioactive isotope commonly used in cancer therapy. The result, they report, was the production of substantial amounts of formamide more quickly than earlier attempts by researchers using theoretical models and in laboratory settings.

It remains unclear whether early Earth had enough radioactive material in the right places to produce the chemical reactions that led to the formation of formamide. And even if the conditions were right, scientists cannot yet conclude that formamide played an important role in the origin of life.

Still, the new research furthers the evidence of the possible role of alternative solvents and presents a differing picture of the basis of life. Furthermore, it is suggestive of processes that might be at work on other exoplanets as well – where solvents other than water could, with energy supplied by radioactive sources, provide the necessary setting for simple compounds to be transformed into far more complex building blocks.

Formamide is a clear liquid which is miscible with water and has an ammonia-like odor.

“Imagine that water-based life was preceded by completely unique networks of interacting molecules that approximated, but were distinct from and followed different chemical rules, than life as we know it,” said Adam.

Their work was presented at recent gatherings of the International Society for the Study of the Origin of Life, and the Astrobiology Science Conference.

The team of Adam and Aono are hardly the first to put forward the formamide hypothesis as a solution to the water paradox, and they are also not the first to posit a role for high-energy, radioactive particles in the origin of life.

An Italian team led by Rafaelle Saladino of Tuscia University recently proposed formamide as a chemical that would supply necessary elements for life and would avoid the ‘water paradox.’ Since the time that Marie Curie described the phenomenon of radioactivity, scientists have proposed innumerable ways that the emission of particle-shedding atomic nuclei might have played roles, either large or small, in initiating life on Earth.

Merging the science of formamide and radioactivity, as Adam and Aono have done, is a potentially significant step forward, though one that needs deeper study.

“If we have formamide as a solvent, those precursor molecules can be kept stable, a kind of cradle to preserve very interesting products,” said Aono, who has moved to Tokyo-based Keio University while remaining a fellow at ELSI.

Aono and technician Isao Yoda in the radiation room with the cobalt-60 safely tucked away. (Nerissa Escanlar.)

The experiment with cobalt-60 did not begin as a search for a way to concentrate the production of formamide. Rather, Adam was looking more generally into the effects of gamma rays on a variety of molecules and solvents, while Aono was exploring radioactive sources for a role in the origin of life.

The two came together somewhat serendipitously at ELSI, an origins-of-life research center created by the Japanese government. ELSI was designed to be a place for scientists from around the world and from many different disciplines to tackle some of the notoriously difficult issues in origins of life research. At ELSI, Adam, who had been unable to secure sites to conduct laboratory tests in the United States, learned from Aono about a sparingly-used (and free) cobalt-60 lab; they promptly began collaborating.

It is well known that the early Earth was bombarded by high-energy cosmic particles and gamma rays. So is the fact that numerous elements (aluminum-26, iron-60, iodine-129) have existed as radioactive isotopes that can emit radiation for minutes to millennium, and that these isotopes were more common on early Earth than today. Indeed, the three listed above are now extinct on Earth, or nearly extinct, in their natural forms

Less known is the presence of “natural nuclear reactors” as sites where a high concentration of uranium in the presence of water has led to self-sustaining nuclear fission. Only one such spot has been found —in the Oklo region of the African nation of Gabon — where spent radioactive material was identified at 16 sites separate sites. Scientists ultimately concluded widespread natural nuclear reactions occurred in the region some 2 billion years ago.

That time frame would mean that the site would have been active well after life had begun on Earth, but it is a potential proof of concept of what could have existed elsewhere long before

Adam and Aono remain agnostic about where the formamide-producing radioactive particles came from. But they are convinced that it is entirely possible that such reactions took place and helped produce an environment where each of the backbone precursors of RNA could readily be found in close quarters.

Current scientific thinking about how formamide appeared on Earth focuses on limited arrival via asteroid impacts or through the concentration of the chemical in evaporated water-formamide mixtures in desert-like conditions. Adam acknowledges that the prevailing scientific consensus points to low amounts of formamide on early Earth.

“We are not trying to argue to the contrary,” he said, “but we are trying to say that it may not matter.”

If you have a unique place (or places) on the Earth creating significant amounts of formamide over a long period of time through radiolysis, then an opportunity exists for the onset of some unique chemistry that can support the production of essential precursor compounds for life, Adam said.

“So, the argument then shifts to— how likely was it that this unique place existed? We only need one special location on the entire planet to meet these circumstances,” he said.

Zachary Adam, an earth scientist in the lab of Andrew Knoll at Harvard University. (Nerissa Escanlar)

After that, the system set into motion would have the ability to bring together the chemical building blocks of life.

“That’s the possibility that we look forward to investigating in the coming years,” Adam said.

James Cleaves, an organic chemist also at ELSI and a co-author of the cobalt-60 paper, said while production of formamide from much simpler compounds represents progress, “there are no silver bullets in origin of life work. We collect facts like these, and then see where they lead.”

Another member of the cobalt-60 team is Albert Fahrenbach, a former postdoc in the lab of Harvard University’s Nobel laureate Jack Szostak and now an associate principal investigator at ELSI.

An organic chemist, Fahrenbach was a late-comer to the project, brought in because Cleaves thought the project could use his expertise.

“Connecting the origins of life, or precursors chemicals, with radiolysis (or radioactivty) was an active field back in the 70s and 80s,” he said. “Then it pretty much died out and went out of fashion.”

Fahrenbach said he remains uncertain about any possible role for radiolysis in the origin of life story. But the experiment did intrigue him greatly, it led him to experiment with some of the chemicals formed by the gamma ray blasts, and he says the results have been productive.

“Without this experiment, I would definitely not be going down some very interesting paths,” he said


Marc Kaufman
Marc Kaufman is the author of two books about space: "Mars Up Close: Inside the Curiosity Mission” and “First Contact: Scientific Breakthroughs in the Search for Life Beyond Earth.” He is also an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer. While the “Many Worlds” column is supported and informed by NASA’s Astrobiology Program, any opinions expressed are the author’s alone.

To contact Marc, send an email to marc.kaufman@manyworlds.space.

Messy Chemistry: A New Way to Approach the Origins of Life

Astrobiologist and chemist Irena Mamajanov and prebiotic chemist Kuhan Chandru in their messy chemistry garb at the Earth-Life Science Institute (ELSI) in Tokyo. Mamajanov leads an effort at the institute to study a new “messy” path to understanding how some prebiotic chemical systems led to building blocks of life on early Earth. (Nerissa Escanlar)

More than a half century ago, Stanley Miller and Harold Urey famously put water and gases believed to make up the atmosphere of early Earth into a flask with water, sparked the mix with an electric charge, and produced amino acids and other chemical building blocks of life.

The experiment was hailed as a ground-breaking reproduction of how the essential components of life may have been formed, or at least a proof of concept that important building blocks of life could be formed from more simple components.

Little discussed by anyone outside the origins of life scientific community was that the experiment also produced a lot of a dark, sticky substance, a gooey tar that covered the beaker’s insides. It was dismissed as largely unimportant and regrettable then, and in the thousands of parallel origins of life experiments that followed.

Today, however, some intrepid researchers are looking at the tarry residue in a different light.

Tarry residue from an experiment — a common result when organic compounds are heated.

Just maybe, they argue, the tar was equally if not more important as those prized amino acids (which, after all, were hidden away in the tar until they were extracted out.) Maybe the messy tar – produced by the interaction of organic compounds and an energy source — offers a pathway forward in a field that has produced many advances but ultimately no breakthrough.

Those now studying the tar call their research “messy chemistry,” as opposed to the “clean” chemistry that focused on the acclaimed organic compounds.

There are other centers where different versions of “messy chemistry” research are under way — including George Cody’s lab at the Carnegie Institution for Sciences and Nicholas Hud’s at the Georgia Institute of Technology — but it is probably most concentrated at the Earth-Life Science Institute in Tokyo (ELSI.)

There, messy chemistry is viewed as an ignored but promising way forward, and almost a call to arms.

“In classical origin-of-life synthetic chemistry and biology you’re looking at one reaction and analyzing its maximum result. It’s A+B = C+D,” said Irena Mamajanov, an astrobiologist with a background in chemistry who is now a principal investigator ELSI and head of the overall messy chemistry project.

“But life is not like that; it isn’t any single reaction. They’re looking at a subset of reactions and we ask: ‘Why not look at the whole complex system?’”


Irena Mamajanov of ELSI, with colleague Yuki Suna, synthesizes particular complex molecules similar to enzymes to explore the many pathways that could have been involved in the production of actual early enzymes. The term “messy chemistry” grew out of a prebiotic chemistry conference at the Carnegie Institution for Science in Washington several years ago.  (Nerissa Escanlar)

There’s a scientific lineage here – researchers have worked with complex systems and reaction systems in many fields, and in principle this is the same. It’s taking a “systems” approach and applying it to that black box period on Earth when non- biological chemicals were slowly transformed (or transformed themselves) into chemical systems with the attributes of “life.”

The messy chemistry work is getting noticed, and Mamajanov was a featured speaker on the “New Approaches to the Origins of Life” plenary at the 2017 Astrobiology Science Conference, in Mesa, Arizona. At ELSI alone, researchers have been working on messy chemistry using metals, using electricity, using radioactivity, using computational chemistry and using analytical chemistry to tease out patterns and structure in the tars.

Mamajanov says this messy chemistry approach – which she learned to some extent as a fellow at both Carnegie and Georgia Tech — makes intuitive, as well as scientific sense because life is nothing if not complex.

Wouldn’t it be logical for the origin of life to be found in some of the earliest complex systems on Earth, rather than in looking for straight-line processes that progress almost independent of all the chemistry happening around them?

It stands to reason that the gunky tar played a role, she said, because tars allow some essential processes to occur. Tars can concentrate compounds, can encapsulate them, and can provide a kind of primitive (messy) scaffolding that could eventually evolve into the essential backbones of a living entity.


Stanley Miller and the iconic Miller-Urey experiment in 1952. The experiment added some of the chemicals thought to be in the Early Earth atmosphere, some water, and an electric charge. The result was the creation of some building blocks of life (amino acids, nucleotides) and lots of what was long considered a problematic residue of tar.

It’s the structure, in fact, that stands out as a particularly promising aspect of messy chemistry. More traditional synthetic biology is looking for simple molecular structures created by clean reactions, while messy chemistry is doing the opposite.

The goal of messy chemists is to see what interesting chemical processes take place within a defined portion of the messy, complex sample. What unexpected, surprising compounds or chemical structures might be formed? And how might they shed light on the process of chemical self-organization and more generally the origin of life question?

In her lab on the basement floor of the ELSI main building, Mamajanov works with colleagues to synthesize her messy molecules and push further into understanding their structures, their potential ability to adapt, and their suitability as possible precursors to the RNA and DNA molecules that characterize life.

Her specific area of study is hyperbranched polymers – three-dimensional, tree-shaped chains of repeating molecules that connect with other similar molecules. The result is globular, presents multitudes of chemical reactions and has some hidden and protected spaces inside their globs.  Related synthetic, or bio-mimicked chemicals (i.e., modeled on biological compounds and processes) have been used by the drug industry for some time.

With these hyperbranched polymers, Mamajanov has worked to produce pathways within the messy systems where the polymers show characteristics of evolvability.

Hyperbranch polymers exist in nature, most prominently in the process that petroleum oil is form, but are also made synthetically for research.  The tar that Mamajamov makes out of the chemicals is greasy but clear rather than brownish.

Her hyperbranched polymers are synthetic, as are those of noted synthetic chemists–in-search-of-biology such as Steven Benner, at the Foundation for Applied Molecular Evolution and Gerald Joyce of the Scripps Institute.

But the starting points are quite different, as are the goals. The two men are working to create clean chemical systems that produce the building block molecules that they want, but without the tar.  Mamajamov is intentionally making tar.

Eric Smith, a specialist in complexity systems, physics and chemistry who is also at ELSI sees the messy approach as containing the seeds of an important new way forward. “What is now called messy chemistry used to be completely out of the mainstream,” he said. “That is no longer the case.”

Smith described how John Sutherland of the Laboratory of Molecular Biology at Cambridge, U.K. won accolades for his work on the prebiotic assembly of important building blocks for RNA, using controlled chemistry that avoided all the messiness.

But he was also criticized later for using a such a controlled model – early Earth, after all, did not have any outside controller – and Smith said Sutherland is incorporating the messier side of prebiotic chemistry today, although tar remains an enemy rather than a potential friend.

“Now he’s going back to a one pot synthesis, allowing reactions that would have to be less controlled than what he was doing before,” Smith said of Sutherland. “He may do it in a way quite different from Irena and others involved in messy chemistry, but it seems to allow for many more complex reactions.”

Eric Smith is a senior scientist at ELSI steeped in the world of complex systems. (Nerissa Escanlar)

And complexity is indeed the desired endpoint. Not simply repetitive reactions and not random ones, but rather reactions that are very complex but ultimately structured.

This is where another novel aspect of the messy chemistry approach comes into play: Mamajanov and others at ELSI are collaborating with practitioners of “artificial chemistry,” computer simulated versions of what could be happening in messy interactions.

The work is being done primarily by Nathaniel Virgo, an artificial life specialist who uses computing to learn about how chemical systems behave once you leave the laboratory world where the number of chemical components is small and controlled.

And his big question: “Are there situations in which you can get ‘order from disorder’ in chemistry – to start with a messy system and have it spontaneously become more ordered? If so, what kinds of conditions are required for this to happen, and what kinds of ordered states can result?

Mamajanov needs Virgo’s computations to analyze and project forward what a messy chemical system might do, since the sheer number of possible chemical reactions involved is huge. And Virgo needs the messy chemistry as a test bed of sorts for his abstracted questions about, in effect, making order out of what appears to be chaos. They are, for each other, hypothesis-generating machines.

Virgo pointed to several primary reasons why computational work is important for answering the question of creating order from disorder (and ultimately, he is convinced, life from non-life.)

“The first is simply that studying messy chemistry experimentally is really hard. If you have a test tube containing a mess, it takes a lot of work to find out what molecules are in it, and basically impossible to know what reactions are happening, at least not without an enormous amount of work. In contrast, in a simulation you know exactly what molecules and reactions are present, even if there are millions of different types.”

Nathaniel Virgo, a specialist in computational artificial-life, speaks during an ELSI seminar in Tokyo.  (Nerissa Escanlar)

The second reason involves the fundamental issue of studying specific chemical systems versus studying general mechanisms.

“As a complex systems scientist, I first want to know what, in general, is required, for a given phenomenon to occur. Once this is known, it should become clear which real systems will exhibit the right kinds of properties.

“This allows us to narrow down the vast space of possible hypotheses for the origins of life, rather than simply testing them one at a time. It should also give us some insight into the question of whether life might be possible with completely different kinds of chemistry than the protein-nucleic acid-metabolite chemistry we have on Earth.

From his studies he has found that in messy chemical systems, chemical self-production occurs and tht the systems can change dramatically in response to small changes such as an increased temperature.

“This suggests that messy chemistry is fundamentally qualitatively different from clean chemistry – adding more species doesn’t just mean the system gets harder to study, it also means that fundamentally new things can happen.”

And in the origins of life world, things are happening.



Marc Kaufman
Marc Kaufman is the author of two books about space: "Mars Up Close: Inside the Curiosity Mission” and “First Contact: Scientific Breakthroughs in the Search for Life Beyond Earth.” He is also an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer. While the “Many Worlds” column is supported and informed by NASA’s Astrobiology Program, any opinions expressed are the author’s alone.

To contact Marc, send an email to marc.kaufman@manyworlds.space.

Cassini Nearing the End, Still Working Hard



Spiral density wave on Saturn’s moon Janus. (NASA/JPL-Caltech)

As the Cassini mission embarks on its final dive this Friday into Saturn, it will continue taking photos all the way down (or as far as it remains operations.)

We’ve grown accustomed to seeing remarkable images for the mission and the planet, but clearly the show is not over, and perhaps far from it.

This is what NASA wrote describing the image above:

This view  shows a wave structure in Saturn’s rings known as the Janus 2:1 spiral density wave. Resulting from the same process that creates spiral galaxies, spiral density waves in Saturn’s rings are much more tightly wound. In this case, every second wave crest is actually the same spiral arm which has encircled the entire planet multiple times.

This is the only major density wave visible in Saturn’s B ring. Most of the B ring is characterized by structures that dominate the areas where density waves might otherwise occur, but this innermost portion of the B ring is different.

For reasons researchers do not entirely understand, damping of waves by larger ring structures is very weak at this location, so this wave is seen ringing for hundreds of bright wave crests, unlike density waves in Saturn’s A ring.

The image gives the illusion that the ring plane is tilted away from the camera toward upper-left, but this is not the case. Because of the mechanics of how this kind of wave propagates, the wavelength decreases with distance from the resonance. Thus, the upper-left of the image is just as close to the camera as the lower-right, while the wavelength of the density wave is simply shorter.

This wave is remarkable because Janus, the moon that generates it, is in a strange orbital configuration. Janus and Epimetheus (see PIA12602) share practically the same orbit and trade places every four years. Every time one of those orbit swaps takes place, the ring at this location responds, spawning a new crest in the wave.

The distance between any pair of crests corresponds to four years’ worth of the wave propagating downstream from the resonance, which means the wave seen here encodes many decades’ worth of the orbital history of Janus and Epimetheus.

According to this interpretation, the part of the wave at the very upper-left of this image corresponds to the positions of Janus and Epimetheus around the time of the Voyager flybys in 1980 and 1981, which is the time at which Janus and Epimetheus were first proven to be two distinct objects (they were first observed in 1966).

Epimetheus also generates waves at this location, but they are swamped by the waves from Janus, since Janus is the larger of the two moons.


The clouds covering the planet itself consist of ammonia ice.  Further down is also some water ice, some ammonium hydrosulfide ice, and further still is ammonia in a gas phase. Some cloud layers are more than 1000 miles thick. (NASA/JPL-Caltech.

This image is from a few months ago, but it certainly puts you there above the deep, deep clouds of Saturn.  False color was used to make the patterns more discernible.

Saturn has some remarkable features in its atmosphere. When the Voyager missions traveled to the planet in the early 1980s, it imaged a hexagon-shaped cloud formation near the north pole. Twenty-five years later, infrared images taken by Cassini revealed the storm was still spinning, powered by jet streams that push it to speeds of about 220 mph (100 meters per second). At 15,000 miles  across, the long-lasting storm could easily contain an Earth or two.

Cassini is now on its last full orbit, to be following by its partial finale.  The final 22 orbits leading to the plunge into the clouds looked like this:

Cassini’s final orbits, in blue, have taken the spacecraft closer to the planet than ever before, and into the space between the rings and the top of the cloud layers. (NASA/JPL-Caltech)


And here is a Jet Propulsion Lab video recapping the Cassini mission and describing its Friday rendezvous:



Marc Kaufman
Marc Kaufman is the author of two books about space: "Mars Up Close: Inside the Curiosity Mission” and “First Contact: Scientific Breakthroughs in the Search for Life Beyond Earth.” He is also an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer. While the “Many Worlds” column is supported and informed by NASA’s Astrobiology Program, any opinions expressed are the author’s alone.

To contact Marc, send an email to marc.kaufman@manyworlds.space.

Is That the Foundation of NASA I Feel Shifting?

A lunar outpost was an element of the George W. Bush era Vision for Space Exploration, which has been replaced with President Barack Obama’s space policy. The outpost would have been an inhabited facility on the surface of the Moon. At the time it was proposed, NASA was to construct the outpost over the five years between 2019 and 2024. Now the man nominated to be the next NASA administrator, James Bridenstine, is a strong and vocal advocate of building a moon colony.  (NASA)

Reading about some of the views coming from the man recently nominated to become NASA’s Administrator, Rep. James Bridenstine of Oklahoma, I heard the sound of a door closing.

Other doors will surely be opened if he is confirmed by the Senate, but that shutting door happens to be to the gateway to a realm that has engrossed and nurtured me and clearly many millions of Americans.

What is happening, I fear, is that our Golden Age of space science, of exploration for the sake of expanding humanity’s knowledge and wonder, is about to wind down.  The James Webb Space Telescope will (probably) still be launched, and missions to Europa and Mars are on the books.  But to be a Golden Age there must be an on-going vision for the future building on what has been accomplished.

When it comes to space science, that clearly takes strong government support and taxpayer money.  And if what I’m reading is correct, a lot of that future NASA funding for exploring and understanding the grand questions of space science will be going instead to setting up and maintaining that colony on the moon.

And the goals Bridenstine appears to have in mind when he speaks of setting up a moon colony are decidedly military, strategic and commercial.  As when Vice President Mike Pence spoke to NASA workers at the Kennedy Space Center to telegraph the Trump Administration’s space vision, space science is essentially an afterthought.

Media coverage of the Bridenstine selection has tended to focus on the fact that he’s a politician and that he has earlier been quite critical of climate change science.

But what concerns me most are his views about space science in general.  Because with the money and focus a major moon colony project would take, NASA’s space science initiatives run the risk of returning to the back seat they occupied in the agency’s earlier days.

Rep. Jim Bridenstine, R-Okla., addresses the Space Symposium in Colorado Springs in 2016. (Tom Kimmell)

A former jet pilot, director of the Tulsa Air and Space Museum and an early supporter of then candidate Donald Trump, Bridenstine has been clear for a long time about his priorities in space.  I think we have to assume they correspond to the views of those in the White House.

In a speech last year to the Lunar Exploration Group titled This is Our Sputnik Moment,”  he pointed to what he described as a major missed opportunity the mid 1990s “discovery” of water at the poles of the moon by a Defense Department mission.  (It was actually a Navy-NASA mission that first made the detection, and it hinted at the presence of water rather than proving anything. The proof came later via missions by NASA, the Japanese space agency, the Chinese space agency and perhaps most important, the Indian space agency.)

Here are excerpts from the talk he gave, which I am quoting at length to to give a better feel for his mindset and for the kind of change he is proposing.  These are points consistent with talks he has given many times before and are memorialized in his proposed American Space Renaissance Act.   American space activities, he makes clear, should focus first and foremost on cis-lunar space, the area between the moon and Earth.

“This single discovery” of frozen water on the moon, he said, “should have immediately transformed America’s space program. Water ice not only represents a critical in situ resource for life support (air and water); it can be cracked into its components, hydrogen and oxygen, to create the same chemical propellant that powered the Space Shuttle.

“From the discovery of water ice on the moon until this day, the American objective should have been a permanent outpost of rovers and machines at the poles with occasional manned missions for science and maintenance. The purpose of such an outpost should have been to utilize the materials and energy of the moon to drive down the costs and increase the capabilities of cis-lunar space. Let’s talk about why.

“The watershed discovery of lunar ice happened at a time when space was transforming all of our lives, ” he continued. “Today, our very way of life depends on space. We have transformed how we communicate, navigate, produce food and energy, conduct banking, predict weather, perform disaster relieve, provide security, and so much more.

“Each of these market segments continues to grow and improve the human condition on Earth, but a 2013 study by the Inter-Agency Space Debris Coordination Committee determined that the debris population in low earth orbit will continue to grow due to collisions even if nothing new is launched. Catastrophic collisions such as Iridium 33-Cosmos 2251 [which took place in 2009] will occur every five to nine years. Each such collision will create thousands of pieces of debris and result in more collisions.”

With so many satellites and much debris in low-earth orbit, Bridenstine said, it has become increasingly hazardous to send up multi-million and billion-dollar satellites.  One way to limit the congestion, he said, is to make satellites fly higher and live longer, and that means getting them additional fuel to stay on course.  The way to do that, he argues, is to gear up that envisioned water-cracking facility on the moon to produce the hydrogen to refuel satellites.   A potentially reasonable series of points.

Spent space satellites and debris, including that from a Chinese missile fired in 2007 that broke up one of the nation’s older weather satellites, are making low-Earth orbiting more hazardous.  Can hydrogen fuel from cracked water ice on the moon help break the logjam by servicing satellites further from Earth and allowing them to orbit for longer periods of time?  (NASA)

Then comes what would be a real game-changer:

“This is only possible because of all the risk that the government has already retired for these capabilities. Now, the U.S. government should play a part in developing the tools for lunar energy resource development, cis-lunar satellite servicing, and maintenance. The U.S. government must work to retire risk, make the operations routine, and once again empower commercial companies.

In other words, the U.S. government and presumably NASA should do the heavy lifting to create (and fund) this architecture so that commercial companies — among others — can profit from it.

This investment, he said, “has already worked to an extent in low Earth orbit, and now we should apply this model to cis-lunar space. This is not only appropriate for economic development and to improve the human condition on Earth, but to provide for national security, which is now entirely dependent on space-based capabilities. Every domain of warfare today depends on space.

“Once the cis-lunar market develops to service and maintain our traditional space-based military and commercial capabilities, other opportunities will naturally follow. The surface of the moon is composed mainly of oxides of metals: iron, magnesium, aluminum, silicon, titanium and others.

Raw platinum

“While these oxides can be used to produce oxygen for life support and metals for additive manufacturing in situ, they will not likely be exported to earth. However, it is possible, if not likely, that highly valuable platinum group metals are much more available on the moon from astroblemes than they are on earth.

“Such a discovery with cis-lunar transportation capabilities would fundamentally transform American commercial lunar development and could profoundly alter the economic and geopolitical balance of power on Earth. This could explain the Chinese interest in the moon. The question is: What are WE, the United States, doing to make sure the free world participates economically in such a discovery? The U.S. government has a role to play here.

“Competition for locations on the moon (the poles) and resources is inevitable. It must be stated that constitutionally, the U.S. government is required to provide for the common defense. This includes defending American military assets in space AND commercial assets in space, many of which have and will have a dual role of providing commercial and military capabilities. President Kennedy said, ‘Whatever men shall undertake, free men must fully share.’

“The U.S. government must establish a legal framework and be prepared to defend private and corporate rights and obligations all within keeping the Outer Space Treaty. And to enable freedom of action, the United States must have cis-lunar situational awareness, a cis-lunar presence, and eventually must be able to enforce the law through cis-lunar power projection. Cis-lunar development will either take the form of American values with the rule of law, or it will take the form of totalitarian state control. The United States can decide who leads.”

This image of the moon’s north polar region was taken by the Lunar Reconnaissance Orbiter Camera, or LROC. One of the primary scientific objectives of LROC is to identify regions of permanent shadow and near-permanent illumination. Since the start of the mission, LROC has acquired thousands of Wide Angle Camera images approaching the north pole. From these images, scientists produced this mosaic, which is composed of 983 images taken over a one month period during northern summer. This mosaic shows the pole when it is best illuminated, regions that are in shadow are candidates for permanent shadow, and possibly H2O. (NASA/GSFC/Arizona State University)

So this is where a moon colony leads us as viewed by a proponent: to a day when satellites and spacecraft can be fueled with lunar hydrogen while in space, but also with potential turf wars on the moon over the source of that precious hydrogen fuel.  To an expansion of American might and power to meet the perceived need to dominate space between Earth and the moon. And to a desire to exploit the moon for platinum and potentially other riches.

The only references I’ve seen from Bridenstine about space science are that a moon colony could be a good refueling and take-off point for travel to deeper space, and the belief that while sending humans to Mars should be a long-range vision, it isn’t going to happen anytime soon.  In fairness, it must be said that Bridenstine has pretty consistently voted in favor of NASA space science projects in the past,  and he has not shown hostility towards planetary or orbiting observatory missions.  But that was before there was a costly moon colony infrastructure to potentially build.

In some ways a NASA U-turn like this was almost inevitable.  The agency that made its historic mark with the Apollo program has been, with limited exceptions, out of the humans-to-space business for years.  Rockets and capsules to change this are on their way, and many possible uses for this very powerful and very costly equipment has been debated for some time.

All the while,  in the place of human exploration of space has been the phenomenal success of the space science program — with its grand observatories like the Hubble (and soon the James Webb Space Telescope), unmanned mission such as Cassini (to Saturn) and Juno (to Jupiter) and New Horizons  (to Pluto,) ground-breaking surveys of the exoplanet world by Kepler, and the now five years of Curiosity roving on Mars.

All have been immensely popular with the public by any measure, and I like to think they helped people understand much better the world in which we live.  But the missions are clearly less appealing to commercial, military and generally strategic forces that seem to want a very different kind of American space program.

Our overall national space effort has always spent more on the military side than the civilian, and NASA has also obviously played a role that is both geopolitically and militarily important.

But at its heart, NASA has for some time been about exploring and better understanding the planets and exoplanets and stars and galaxies of our universe (those Many Worlds,) and thereby enriching, enormously, I believe, life here on Earth.

The cis-lunar vision of Bridenstine and others may fail to get off the drawing boards, rather like the Obama Administration’s plan to capture and pull an asteroid towards Earth where astronauts could learn how to live and work in deep space.

But change is in the air, and the selection of Bridenstine is a pretty clear sign of how and where the winds are blowing.

Marc Kaufman
Marc Kaufman is the author of two books about space: "Mars Up Close: Inside the Curiosity Mission” and “First Contact: Scientific Breakthroughs in the Search for Life Beyond Earth.” He is also an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer. While the “Many Worlds” column is supported and informed by NASA’s Astrobiology Program, any opinions expressed are the author’s alone.

To contact Marc, send an email to marc.kaufman@manyworlds.space.