Does Proxima Centauri Create an Environment Too Horrifying for Life?

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Artist’s impression of the exoplanet Proxima Centauri b. (ESO/M. Kornmesser)

 

In 2016, the La Silla Observatory in Chile spotted evidence of possibly the most eagerly anticipated exoplanet in the Galaxy. It was a world orbiting the nearest star to the sun, Proxima Centauri, making this our closest possible exoplanet neighbour. Moreover, the planet might even be rocky and temperate.

Proxima Centauri b had been discovered by discerning a periodic wobble in the motion of the star. This revealed a planet with a minimum mass 30% larger than the Earth and an orbital period of 11.2 days. Around our sun, this would be a baking hot world.

But Proxima Centauri is a dim red dwarf star and bathes its closely orbiting planet in a level of radiation similar to that received by the Earth. If the true mass of the planet was close to the measured minimum mass, this meant Proxima Centauri b would likely be a rocky world orbiting within the habitable zone.

 

Comparison of the orbit of Proxima Centauri  b with the same region of the solar system. Proxima Centauri is smaller and cooler than the sun and the planet orbits much closer to its star than Mercury. As a result it lies well within the habitable zone. (ESO/M. Kornmesser/G. Coleman.)

Sitting 4.2 light years from our sun, a journey to Proxima Centauri b is still prohibitively long.

But as our nearest neighbor, the exoplanet is a prime target for the upcoming generation of telescopes that will attempt to directly image small worlds. Its existence was also inspiration for privately funded projects to develop faster space travel for interstellar distances.

Yet observations taken around the same time as the La Silla Observatory discovery were painting a very different picture of Proxima Centauri. It was a star with issues.

This set of observations were taken with Evryscope; an array of small telescopes that was watching stars in the southern hemisphere. What Evryscope spotted was a flare from Proxima Centauri that was so bright that the dim red dwarf star became briefly visible to the naked eye.

Flares are the sudden brightening in the atmosphere of a star that release a strong burst of energy. They are often accompanied by a large expulsion of plasma from the star known as a “coronal mass ejection”. Flares from the sun are typically between 1027 – 1032 erg of energy, released in a few tens of minutes.

For comparison, a hydrogen bomb releases the equivalent of about 10 megatons of TNT or a mere 4 x 1023 erg. Hitting the Earth, energy from solar flares and coronal mass ejections can disrupt communication equipment and create a spectacular aurora.

A solar flare erupting from the right side of the sun. (NASA/SDO)

But the Proxima super-flare spotted by Evryscope was well beyond a regular stellar flare.

On March 18 in 2016, this tiny red dwarf emitted an energy belch of 1033.5 erg. The flare consisted of one major event and three weaker ones and lasted approximately one hour, during which time Proxima Centauri became 68 times brighter.

A sudden, colossal increase in the brightness of a star does not bode well for any closely orbiting planets.

However, such a major flare might well be rare. If the star was normally fairly quiet, perhaps a planet could recover from a single very disruptive flare in the same way the Earth has survived mass extinction events.

Led by graduate student Ward Howard at the University of North Carolina, Chapel Hill, the discovering team used Evryscope to monitor Proxima Centauri for flares for a total of 1344 hours between January 2016 and March 2018. What they found was a horrifying environment, as reported in The Astrophysical Journal Letters.

While an event on the scale of the Proxima super-flare was only seen once, 24 large eruptions were spotted from the red dwarf, with energies from 1030.5 to 1032.4 erg. Allowing for the fact the star had only been observed for a small part of the year, this pattern of energy outbursts meant that a massive super-flare (1033 erg) was likely to occur at least five times annually.

 

Artist’s impression of the surface of the planet Proxima Centauri b. But what would conditions be like so close to a flaring star? (ESO/M. Kornmesser)

 

But how important is this for the planet?

The Earth is protected from flares from our sun by our atmosphere. The ozone layer absorbs harmful ultraviolet radiation with wavelengths between about 2400 – 2800 Angstroms (10-10 m), preventing it reaching the surface. So what if Proxima Centauri b had a similar protective layer of gases as the Earth?

To answer this question, Howard and his team ran simulations of an Earth-like atmosphere on Proxima Centauri b.

As is the case for the sun, the team assumed that large flares would be frequently accompanied by a coronal mass ejection. Radiation and stellar material then flooded over an Earth-like Proxima Centauri b at the observed rate. And the atmosphere crumbled.

 

Ward Howard, astrophysicist at the University of North Carolina.

High energy particles in the coronal mass ejections split the nitrogen molecules (N2) in the atmosphere, which reacted with the ozone (O3) to form nitrogen oxide (NO2). After just 5 years, 90% of the ozone in the atmosphere was lost and the amount was still decreasing.

Without ozone, the surface of Proxima Centauri b would be stripped of its protection from UV radiation. During the Proxima super-flare, the radiation dose without the protective ozone would be 65 times larger than that needed to kill 90% of one of the most UV-resilient organisms on Earth.

“Life would have to undergo extreme adaptation to UV or exist underground or underwater,” Howard notes. “Only the most resistant organisms could survive on the surface in this environment.”

The simulation does assume that Proxima Centauri b does not have a magnetic field. Such a shield could channel the particles from the coronal mass ejection to the poles, forming the aurora as on Earth and reducing the damage to the atmosphere.

However, orbiting so close to the star, Proxima Centauri b is likely to be in tidal lock as the moon is to the Earth. This is expected to weaken the magnetic field, as the slower rotation makes it harder to create a magnetic dynamo within the planet.

So if the protective shields are lowered on Proxima Centauri b, is our nearest planet a world populated by highly resistant UV organisms? Or have we seen evidence that rather than warming the planet to allow life to exist, this star has snuffed it out?

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Water Worlds, Aquaplanets and Habitability

Facebooktwittergoogle_plusredditpinterestlinkedinmail
This artist rendering may show a water world — without any land — or an aquaplanet with lots of more shallow water around a rocky planet. (NASA)

 

The more exoplanet scientists learn about the billions and billions of celestial bodies out there, the more the question of unusual planets — those with characteristics quite different from those in our solar system — has come into play.

Hot Jupiters, super-Earths, planets orbiting much smaller red dwarf stars — they are all grist for the exoplanet mill, for scientists trying to understand the planetary world that has exploded with possibilities and puzzles over the past two decades.

Another important category of planets unlike those we know are the loosely called “water worlds” (with very deep oceans) and their “aquaplanet” cousins (with a covering of water and continents) but orbiting stars very much unlike our sun.

Two recent papers address the central question of habitability in terms of these kind of planets — one with oceans and ice hundreds of miles deep, and one particular and compelling planet (Proxima Centauri b, the exoplanet closest to us) hypothesized to have water on its surface as it orbits a red dwarf star.

The question the papers address is whether these watery worlds might be habitable.  The conclusions are based on modelling rather than observations, and they are both compelling and surprising.

In both cases — a planet with liquid H20 and ice many miles down, and another that probably faces its red dwarf sun all or most of the time — the answers from modelers is that yes, the planets could be habitable.   That is very different from saying they are or even might be inhabited.  Rather,  the conclusions are based on computer models that take into account myriad conditions and come out with simulations about what kind of planets they might be.

This finding of potential watery-world habitability is no small matter because predictions of how planets form point to an abundance of water and ice in the planetesimals that grow into planets.

As described by Eric Ford, co-author of one of the papers and a professor of astrophysics at Pennsylvania State University, “Many scientists anticipate that planets with oceans much deeper than Earths could be a common outcome of planet formation. Indeed, one of the puzzling properties of Earth is that it has oceans that are just skin deep” compared to the radius of the planet.

“While some planets very close to their star might loose all their water, it would take a delicate balancing act to remove many ocean’s worth of water and to leave a planet with oceans as shallow as those on Earth.”

An interesting place to start.

 

Artist’s conception of a planet covered with a global ocean. A new study finds that these wate rworlds could maintain stable climates and perhaps sustain life under certain conditions. (ESO/M. Kornmesser)

 

It should first be said that many scientists are dubious that extreme water worlds can support life or can support detectable life.  My colleague Elizabeth Tasker wrote a column — Can You Overwater a Planet? — focused on this view last year.

The first of the two new exoplanets/ocean papers involves planets with very deep oceans. Written by Edwin Kite of the University of Chicago and Ford of Penn State, the paper in the Astrophysical Journal concludes that even a planet with such super deep oceans could — under certain conditions — provide habitable conditions.

This finding is at odds with previous simulations, and Kite says that is part of its significance. The scientific community has largely assumed that planets covered in a deep ocean would not support the cycling of minerals and gases that keeps the climate stable on Earth, and thus wouldn’t be friendly to life.

But the Kite and Ford study found that ocean planets (with 10 to 1000 times as much water as Earth) could remain habitable much longer than previously assumed. The authors performed more than a thousand simulations to reach that conclusion.

Eric Ford is a professor astrophysics at Penn State and a specialist in planet formation. (Penn State)

“This really pushes back against the idea you need an Earth clone—that is, a planet with some land and a shallow ocean,” said Edwin Kite, assistant professor of geophysical sciences at the University of Chicago and lead author of the study.

Edwin Kite is an assistant professor of planetary sciences at the University of Chicago. (Univ. of Chicago)

Because life needs an extended period to evolve — and because the light and heat on planets can change as their stars age — scientists usually look for planets that have both some water and some way to keep their climates stable over time. The method for achieving this steady state that we know is, of course, how it works on Earth. Over eons, our planet has cooled itself by drawing down atmospheric greenhouse gases into minerals and warms itself up by releasing them via volcanoes.

But this model doesn’t work on a water world, with deep water covering the rock and suppressing volcanoes.

Kite and Ford wanted to know if there was another way to achieve a balance. They set up a simulation with thousands of randomly generated planets, and tracked the evolution of their climates over billions of years.

“The surprise was that many of them stay stable for more than a billion years, just by luck of the draw,” Kite said. “Our best guess is that it’s on the order of 10 percent of them.”

These planets sit in the right location around their stars. They happened to have the right amount of carbon present, and they don’t have too many minerals and elements from the crust dissolved in the oceans that would pull carbon out of the atmosphere. They have enough water from the start, and they cycle carbon between the atmosphere and ocean only, which in the right concentrations is sufficient to keep things stable.

None of this means that such a planet exists — our ability to detect oceans worlds is in its infancy.  The issue is rather that Kite and Ford conclude that a deep ocean planet could potentially be habitable if other conditions were met.

 

Artist rendering of Proxima Centauri b orbiting its red dwarf host star. (ESO/L.Calçada/Nick Risinger)

 

Anthony Del Genio and his team of modelers at NASA’s Goddard Institute for Space Studies in New York used their state-of-the-art climate simulations to look at another aspect of the exoplanet water story, and they chose Proxima Centauri b as their subject.  The roughly Earth-sized planet was discovered in 2016 and is the closest exoplanet to Earth.

Scientists determined early on that it is a rocky (as opposed to gaseous) planet and that it orbits its host star every 11 days.  If that star was as powerful as our sun, there would be no talk of possible habitability on close-in Proxima b.  But the star is a red dwarf and puts out only a fraction of the radiation coming from a host star like our sun.

Still, the case for habitability on Proxima b was initially considered to be weak, in part because the planet is tidally locked by its closeness to the host star.  In other words, it would most likely not spin to create days and nights as it orbits, but rather would have a sun-facing side and a space-facing side — making the temperature differences great.

Our ability to characterize a small planet like Proxima b remains very limited, and so it is unknown whether the planet has water or whether it has an atmosphere.  So those two essential components of the habitability question are missing.

But Del Genio’s team decided to model the dynamics of Proxima b with a presumed ocean, though not one that is many miles deep.  In Earth science parlance, what Del Genio referred to as an “aquaplanet.” And using their sophisticated models, they would simulate “dynamic” oceans with currents like our own, rather than the stationary oceans modeled earlier on exoplanets.

And rather to their surprise, they reported in the journal Astrobiology that their model of ocean behavior showed that the planet would not have only small areas of potential habitability — the earlier proposed habitable “eyeball” scenario — but rather much of the planet could be habitable.  That could include some of the normally space-facing side.

 

One type of possible water world is an “eyeball” planet, where the star-facing side is able to maintain a liquid-water ocean, while the rest of the surface is ice. (Image via eburacum45/DeviantArt)

 

“Our group said let’s hook up an atmosphere to a dynamic ocean rather than a static one,” Del Genio said.  “That way you get ocean currents like those on our coasts, and they move water of different temperatures around.

“If you have a real and dynamic ocean in your model, then we found that the eyeball goes away.  Usually the currents go west to east and they carry warmer water even to the night side.”

Anthony Del Genio, leader of NASA’s GISS team that  uses cutting edge Earth climate models to better understand conditions on exoplanets.

So using this more sophisticated model, not insignificant areas of Proxima b, or any other planet like it orbiting a red dwarf star, could be habitable, they concluded.  But again, that is assuming some pretty big “ifs” — the presence of an ocean and an atmosphere.

And then the team added variables such as a thick nitrogen and carbon atmosphere or a thin one, fresh water or salty water, a planet that is firmly locked and never rotating, or one that rotates a modest amount — giving the dark side some light.  Del Genio said that with all these added factors, a substantial portion of the surface of Proxima b, or a planet like it, would have liquid water and potentially habitable conditions.

This focus on watery worlds — including those that would be extreme compared with Earth today — makes sense in the context of the history of Earth.

While there is no direct evidence of this, many scientists think that the very early Earth was covered for a period of time with water with little or no land.

And then after land appeared, it still took some three billion years for any life form — bacteria, early planets — to colonize the land, and another half billion years for animals to come ashore.  Yet the oceans were long habitable and inhabited, as early a 3.8 billion years ago.

So until astronomy and exoplanet science develop the needed instruments and scientists acquire the observed knowledge of conditions on water worlds, progress will come largely from modelling that tells us what might be possible.

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Proxima b Is Surely Not “Earth-like.” But It’s A Research Magnet And Just May Be Habitable.

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Simulated comparison of a sunset on Earth and Proxima b. The red-dwarf star Proxima Centauri appears almost three times bigger than the Sun in a redder and darker sky. Red-dwarf stars appear bigger in the sky than sun-like stars, even though they are smaller. This is because they are cooler and the planets have to be closer to them to maintain temperate conditions. The original photo of the beach was taken at Playa Puerto Nuevo in Vega Baja, Puerto Rico. Credit: PHL @ UPR Arecibo.
A simulated comparison of a sunset on Earth and Proxima b. The images sets out to show that the red-dwarf star Proxima Centauri appears almost three times bigger than our sun in a redder and darker sky. There is value in illustrating how conditions in different solar systems would change physical conditions on the planets, but there is a real danger that the message conveyed becomes the similarities between planets such as Earth and Proxima b.  At this point, there is no evidence that Proxima b is “Earth-like” at all. The original photo of the beach was taken at Playa Puerto Nuevo in Vega Baja, Puerto Rico. (PHL @ UPR Arecibo))

It is often discussed within the community of exoplanet scientists that a danger lies in the description of intriguing exoplanets as “Earth-like.”

Nothing discovered so far warrants the designation, which is pretty nebulous anyway.  Size and the planet’s distance from a host star are usually what earn it the title “Earth-like,” with its inescapable expectation of inherent habitability. But residing in a habitable zone is just the beginning; factors ranging from the make-up of the planet’s host star to the presence and content of an atmosphere and whether it has a magnetic field can be equally important.

The recent announcement of the detection of a planet orbiting Proxima Centauri, the closest star to our own, set off another round of excitement about an “Earth-like” planet.  It was generally not scientists who used that phrase — or if they did, it was in the context of certain “Earth-like” conditions.  But the term nonetheless became a kind of shorthand for signalling a major discovery that just might some day even yield a finding of extraterrestrial life.

Consider, however, what is actually known about Proxima b:

  • The planet, which has a minimum mass of 1.3 Earths and a maximum of many Earths, orbits a red dwarf star.  These are the most common class of star in the galaxy, and they put out considerably less luminosity than a star like our sun — about one-tenth of one percent of the power.
  • These less powerful red dwarf stars often have planets orbiting much closer to them than what’s found in solar systems like our own.   Proxima b, for instance, circles the star in 11.3 days.
  • A consequence of this proximity is that the planet is most likely tidally locked by the gravitational forces of the star — meaning that the planet does not rotate like Earth does but rather has a daytime and nighttime side like our moon.  Some now argue that a tidally locked planet could theoretically be habitable,  but the consensus seems to be that it is an obstacle to habitability rather than a benefit.
  • The authors of the Proxima b paper make clear that evidence that the planet is rocky (as opposed to gaseous) is limited, and that’s why they label it as a “candidate terrestrial planet.”

So to describe Proxima b as “Earth-like” seems unfortunate to me, and prone to giving the public the misguided impression of a planet with blue skies, oceans, and fish swimming in them.  Proxima b may have some very broadly defined characteristics that parallel Earth, but so do many other exoplanets that are definitely not habitable.  And therein lies the really interesting part.

Before getting into that area, it should be made clear that the Proxima b detection was a game-changer, a discovery of historic proportions.  It was and will be for a long time.

The detection, after all, provides the nearest opportunity possible for beginning to understand the extraordinary complexities of what makes a planet truly habitable — something that is far from understood today.  And later, Proxima b may become a petri dish of sorts for identifying and measuring chemical signatures that could be a byproduct of some kind of life.

These are difficult tasks, to say the least, and will take an army of scientists years to come up with answers.  But the good news is that the exoplanet field has already begun publishing papers on the dynamics and possible habitability of Proxima b, and they provide beginning insights into the issues, the excitement and the untold difficulties associated with this grandest of scientific chases.

 

The detection of Proxima b has been met with enormous enthusiasm in the exoplanet community. Some call it the biggest discovery since the detection of 51 Pegasi a, the first exoplanet to be positively identified. Detecting a planet, however, is just the beginning of the still unsettled process of determining its history and current makeup, and whether or not it might be habitable.
The detection of Proxima b has been met with enormous enthusiasm in the exoplanet community. Some call it the biggest discovery since the detection of 51 Pegasi a, the first exoplanet to be positively identified. Detecting a planet, however, is just the beginning of the still unsettled process of determining its history and current makeup, and whether or not it might be habitable. (ESO/L.Calçada/Nick Risinger)

 

Two Proxima papers that appeared soon after the August 24 announcement came from the University of Washington’s Virtual Planetary Laboratory. Supported by the NASA Astrobiology Institute since 2001, it is a leader in exoplanet research, modelling and habitability  The team, directed by Victoria Meadows, received the Proxima detection paper before it was released because of longstanding relationships with the lead author, Guillem Anglada-Escude.

The two papers from the VPL team — one with Meadows in the lead and the other organized by University of Washington astronomer Rory Barnes — take broad, interdisciplinary approaches to the planet.

“Part one is what happened to this planet over time — what can we learn about its history, its evolution?” Meadows said.  “Part two is what does the history mean for the current environment right now? We need photo-chemical models of what might be present, and then we have to look at what instruments we would need to detect what is decided we should be looking for.”

Victoria Meadows is an astrobiologist and planetary astronomer whose research interests focus on acquisition and analysis of remote-sensing observations of planetary atmospheres and surfaces. In addition to studying planets within our own Solar System, she is interested in exoplanets, planetary habitability and biosignatures. Since 2000, she has been the Principal Investigator for the Virtual Planetary Laboratory Lead Team of the NASA Astrobiology Institute. Her NAI team uses models of planets, including planet-star interactions, to generate plausible planetary environments and spectra for extrasolar terrestrial planets and the early Earth. This research is being used to help define signs of habitability and life for future extrasolar terrestrial planet detection and characterization missions.
Victoria Meadows is an astrobiologist and planetary astronomer at the University of Washington. Since 2000, she has been the Principal Investigator for the Virtual Planetary Laboratory Lead Team of the NASA Astrobiology Institute. Her NAI team uses models of planets, including planet-star interactions, to generate plausible planetary environments and spectra for extrasolar terrestrial planets and the early Earth.

The Barnes paper is here and the Meadows paper is here.

The two take on different tasks, but really are one. Both start with an appreciative nod to what will quickly become the planet that scientists want to study, and then they go into the extraordinary complexity of the task ahead.

As Barnes and his team concluded, a major obstacle to habitability on Proxima b is the well documented evolution of red dwarf stars.

While their energy output is relatively low when mature, they go through early phases when they are much brighter and send out enormous solar flares that can double their brightness in a matter of minutes.  Barnes said these intense phases could easily sterilize a close-in planet, leaving it incapable of evolving into a potentially living world even if, a billion years later, conditions for life were much more favorable.

“The planet is in a habitable zone and so could have had liquid water,  but my biggest concern is the retention of that water,” Barnes said of Proxima b.  “If the planet was formed in its current orbit, then it was baked enough for 100, 200 million years to form a runaway greenhouse effect.”  A different dynamic may have resulted in the same results on Venus, which once was wet but now is super-hot and parched.

This leads to the next big question:  Could Proxima b have been formed elsewhere, and was later pushed or pulled to its current location?  Barnes said it is certainly possible that the planet spent its early years much further from Proxima Centauri, and he said that the (relatively) nearby presence of much larger star Alpha Centauri A and B certainly could have had dramatic effects on the locations and evolution of the planet.

For these reasons and many more, Barnes said, there is absolutely no way to conclude now that Proxima b either is, or is not, potentially habitable.

 

This artist's impression shows a view of the surface of the planet Proxima b orbiting t he red dwarf star Proxima Centauri, the closest star to the Solar System. The double star A lpha Centauri AB also appears in the image to the upper-right of Proxima itself. Proxima b is a little more massive than the Earth and orbits in the habitable zone around Proxima Centauri, wh ere the temperature is suitable for liquid water to exist on its surface. Credit: ESO/M. Kornmesser
This artist’s impression shows a view of the surface of the planet Proxima b orbiting the red
dwarf star Proxima Centauri, the closest star to the Solar System. The double star Alpha Centauri AB
also appears in the image to the upper-right of Proxima itself. Proxima b is a little more massive than
the Earth and orbits in the habitable zone around Proxima Centauri, where the temperature issuitable for liquid water to exist on its surface.
(ESO/M. Kornmesser)

 

The VPL group specializes in modeling possible planetary scenarios based on particular proposed condition.  The team gets an idea of whether a planet might be habitable based on the history and potential current atmospheric and surface characteristics introduced into the model.

In the paper she led, Meadows and her team reported:

“We used coupled climate-photochemistry models to simulate several plausible states for the current environment of Proxima Cen b, for those various evolutionary scenarios. We find several post-runaway {greenhouse} states that are uninhabitable either due to extreme water loss or inclement surface temperatures. In particular, a dense Venus-like CO2 atmosphere will result in extremely high surface temperatures at Proxima Cen’s current semi-major axis.

“However, several evolutionary scenarios may lead to possibly habitable planetary environments, including O2-rich atmospheres that retain a remnant ocean after extreme water loss.”

So the conclusion of the VPL effort is that we really have no idea now whether Proxima b might be habitable, but the joined papers move the discussion significantly further by describing scenarios where the planet definitely would not be habitable, and some where it just might be.

These are essential guidepost for astronomers to know when actually observing Proxima b, which will surely become a target for many a telescope.  To make an important discovery,  it’s definitely useful  to know what you’re looking for.

Meadows also looked into which telescopes have capacities to make the needed observations, and concluded that large ground-based telescopes have a role to play, though with current technology it will be a very challenging one.  But given the possible results, she said, “I can’t image they wouldn’t make the upgrades happen as fast a possible.”

And then there’s the James Webb Space Telescope (JWST), due to launch in 2018.  Because it observes in the infrared section of the spectrum, it is able to measure heat signatures with precision.  And that opens some exciting possibilities.

 

Caption: This picture combines a view of the southern skies over the ESO 3.6-metre telescope at the La Silla Observatory in Chile with images of the stars Proxima Centauri (lowe r-right) and the double star Alpha Centauri AB (lower-left) from the NASA/ESA Hubble Space Telescope. Proxima Centauri is the closest star to the Solar System and is orbited by the planet Proxima b, which was discovered using the HARPS instrument on the ESO 3.6-metre telescope. Credit: Y. Beletsky (LCO)/ESO/ESA/NASA/M. Zamani
This picture combines a view of the southern skies over the European Southern Observatory’s  3.6-metre telescope at the La Silla Observatory in Chile with images of the stars Proxima Centauri (lower-right) and the double star Alpha Centauri AB (lower-left) from the NASA/ESA Hubble Space Telescope. Proxima Centauri is the closest star to the Solar System and is orbited by the planet Proxima b, which was discoveredusing the HARPS instrument on the ESO 3.6-metre telescope.
 (Y. Beletsky (LCO)/ESO/ESA/NASA/M. Zamani)

 

Meadows and her team laid them out, and so did Harvard astronomer Laura Kreidberg, in a paper for The Astrophysical Journal with Harvard-Smithsonian Center for Astrophysics theoretical physicist and cosmologist  Abraham Loeb.

As Loeb explained in an email:  “As the planet orbits around the star, we should see a changing fraction of its day side, similarly to the phases of the Earth’s moon. The changing  color of the planet  as it orbits the star provides evidence for the temperature contrast between its day and night sides.

“This contrast has an extreme value for bare rock, but is moderated by an atmosphere or an ocean that transfers heat across the planet’s surface. Our paper shows that JWST will be able to distinguish between these cases with high significance after observing the planet for a full orbital time of 11 days.”

In other words, the temperature difference between the planet’s day side and its night side will be larger than expected if there is no atmosphere., and lower than expected if there is.

Determining that there is an atmosphere present, Loeb said, would substantially increase the chances that Proxima b is, or once was, habitable.  The first order would be to look for things like oxygen, water vapor, and methane, which could indicate habitable conditions if not active biological processes.

This is a very difficult task because it requires the ability to catch starlight as it bounces off or filters through the planet’s atmosphere.  He said that while the JWST might be able to detect a few compounds including ozone, full atmospheric analysis will have to wait for future ground-based observatories like the European Extremely Large Telescope, which is expected to see first light in the mid-2020s. Ultimately, it will take a direct imaging space telescope like the one being proposed for a launch in the 2030s to answer many of the important questions.

So the process of getting to really know Proxima b, of learning more than its promising but less-than-revealing location and mass is about to begin.

It’s exciting for sure, and not because Proxima b is “Earth-like.”  Rather, there’s the real possibility of finding a habitable planet that — except in some grand-scale structural ways — is really not so “Earth-like” at all.

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Earth: A Prematurely Inhabited Planet?

Facebooktwittergoogle_plusredditpinterestlinkedinmail
A schematic of the history of the cosmos since the Big Bang identifies the period when planets began to form, but there's indication of when life might have started. Harvard's Avi Loeb wants to put life into this cosmological map, and foresees much more of it in the future, given certain conditions. ( NASA)
A schematic of the history of the cosmos since the Big Bang identifies the period when planets began to form, but there’s no indication of when life might have started. Harvard’s Avi Loeb wants to add life into this cosmological map, and foresees much more of it in the future, given certain conditions. ( NASA)

The study of the formation and logic of the universe (cosmology) and the study of exoplanets and their conduciveness to life do not seem to intersect much.  Scientists in one field focus on the deep physics of the cosmos while the others search for the billions upon billions of planets out there and seek to unlock their secrets.

But astrophysicist and cosmologist Avi Loeb — a prolific writer about the early universe from his position at the Harvard-Smithsonian Center for Astrophysics– sees the two fields of study as inherently connected, and has set out to be a bridge between them.  The result was a recent theoretical paper that sought to place the rise of life on Earth (and perhaps elsewhere) in cosmological terms.

His conclusion:  The Earth may well be a very early example of a living biosphere, having blossomed well before life might be expected on most planets.   And in theoretical and cosmological terms, there are good reasons to predict that life will be increasingly common in the universe as the eons pass.

By eons here, Loeb is thinking in terms that don’t generally get discussed in geological or even astronomical terms.  The universe may be an ancient 13.7 billion years old, but Loeb sees a potentially brighter future for life not billions but trillions of years from now.  Peak life in the universe, he says, may arrive several trillion years hence.

“We used the most conservative approaches to understanding the appearance of life in the universe, and our conclusion is that we are very early in the process and that it is likely to ramp up substantially in the future,” said Loeb, whose paper was published in the Journal of Cosmology and Astroparticle Physics.

“Given the factors we took into account, you could say that life on Earth is on the premature side.”

 

The Earth was formed some 4.5 billions years ago, and life that existed as long ago as 3.5 to 3.8 billion years ago has been discovered. Harvard astrophysicist Avi Loeb argues that life on Earth may well be "premature" in cosmological terms, and that many more planets will have biospheres in the far future. (xxx)
The Earth was formed some 4.5 billion years ago, and signs of life have been discovered that are 3.5 to 3.8 billion years old. Harvard astrophysicist Avi Loeb, with co-authors Rafael Batista and David Sloan of the University of Oxford, argue that life on Earth may well be “premature” in cosmological terms, and that many more planets will have biospheres in the far future.  This artist rendering of early Earth was created by NASA’s  Goddard Space Flight Center Conceptual Image Lab.

This most intriguing conclusion flows from the age of the universe, the generally understood epochs when stars and then planets and galaxies formed, and then how long it would take for a planet to cool off enough to form the chemical building blocks of life and then life itself.  Given these factors, Loeb says, we’re early.

In the long term, the authors determined, the dominant factor in terms of which planets might become habitable proved to be the lifetime of stars. The higher a star’s mass, the shorter its lifetime. Stars larger than about three times the sun’s mass will burn out well before any possible life has time to evolve.

Our sun is a relatively large and bright star, which is why its lifetime will be relatively short in cosmological terms (all together, maybe 11 billion years, with 4.5 billion already gone.)  But smaller stars, the “red dwarf,” low-mass variety, are both far more common in the universe and also much longer lived — as in trillions of years.

These smallest stars generally have less than 10 percent the mass of our sun, but they burn their fuel (hydrogen and helium) much more slowly than a larger star.  Indeed, some may glow for 10 trillion years, Loeb says, giving ample time for life to emerge on any potentially habitable planets that orbit them.  What’s more, there’s every reason to believe that the population of stars in the galaxy and cosmos will increase significantly, giving life ever more opportunity to commence.

Abraham Loeb, usually called "Avi," is the chairman of the Harvard Astronomy Department and xxxx CFA. Mac G. Schumer, Harvard Crimson Mac G. Schumer, Harvard Crimson
Abraham, or Avi, Loeb, is the chairman of the Harvard Astronomy Department and director of the Institute for Theory and Computation at the Harvard-Smithsonian Center for Astrophysics. (Mac G. Schumer, Harvard Crimson)

As a result, the relative probability of life grows over time. In fact, chances of life are 1,000 times higher in the distant future than now.

This calculation, however, comes with a major caveat:  Scientists are sharply divided about whether or not a star much smaller than ours can actually support life.

The potential obstacles are many — an insufficient amount of heat and energy emanating from the star unless the planet is close in, the fact that red dwarf stars have powerful, luminous beginnings that could send a nearby planet into a runaway greenhouse condition that might result in permanent sterilization, and that many planets around red dwarfs would be close to the stars and consequently tidally locked.  That means that one side of the planet would always face the star and be light, while the other would continue in eternal darkness.  This was earlier considered to be a pretty sure deterrent to life.

Recent theoretical analyses of planets around these red dwarfs, however, suggests that life could indeed emerge.  It could potentially survive at the margins — where day turns into night and the temperatures would likely be stable– and also in other dayside regions were temperatures could be moderated by clouds and winds.  But no observations have been made to substantiate the theory.

Because of their relatively cool temperatures and resulting low brightness, individual red dwarfs are nearly impossible to see with the naked eye from Earth. But they’re out there.

The nearest star to our sun, Proxima Centauri, is a red dwarf, as are twenty of the next thirty nearest stars.  Data from the Kepler Space Telescope suggests that as many as 25 percent of red dwarfs have planets orbiting in their habitable zones — neither too hot nor too cold to keep liquid water from sometimes pooling on their surfaces.

 

Flares from our sun and from a red dwarf star.
Flares from our sun and from a red dwarf star.  These powerful bursts of energy and heat may be larger on the sun, but in percentage terms they are greater on many red dwarf stars. Since planets around red dwarfs are much closer than larger stars like our sun, those energy bursts might sterilize red dwarf planets. (NASA)

“I think we can and we should test these theories in the years ahead with observations,” Loeb said. “We should be able to tell if nearby low-mass stars have life around them” in the decades ahead.

And if red dwarfs can support life, then the future for life in the universe is indeed grand.

The merging of cosmological theory and astronomical observation that Loeb has in mind would indeed be unusual, but it is nonetheless consistent with the interdisciplinary nature of much of the broader search for life beyond Earth.  That effort has already brought together astrophysicists and geoscientists, astronomers and biologist.  It’s just way too big for one discipline.

An interesting sidelight to Loeb’s argument that Earth may well be among the earliest planets where life appeared and continued is that it would provide a solution to the extraterrestrial life puzzle known as Fermi’s Paradox.

It was in 1950 that renowned physicist Enrico Fermi was talking with colleagues over lunch about the predicted existence of billions of still-to-be-discovered planets beyond our solar system, and the likelihood that many had planets around them.  Fermi also was convinced that the logic of the vast numbers and of evolution made it certain that intelligent, technologically-advanced life existed on some of those planets.

It was an era of fascination with aliens, flying saucers and the like, but there actually were no confirmed reports of visitations by extraterrestrial life.  Ever, it seemed.

If intelligent life is common in the universe, Fermi famously wondered, “Then where is everybody?”

There are many potential answers to the question, including, of course, that we are alone in the universe.  The possibility that Earth might be among the very early planets with life has not been put forward before, but Loeb said that now it has been.

 

If the conclusion is correct that the Earth is most likely among the first planets to support life, then the famous Fermi Paradox could be easily resolved.
If the conclusion is correct that the Earth is most likely among the first planets to support life, then the famous Fermi Paradox could be easily resolved.

“Our view is that we’re at the very beginning of life in the universe, we’re just ramping up,” he said.  “So of course we haven’t been visited by anything extraterrestrial.”

As a congenital thinker in the very long term, Loeb also raised the issue of whether it makes sense for human life to remain on Earth and in our solar system.  The sun, after all, will run out of fuel in those remaining six billion years, will expand enormously as that occurs, and then will re-emerge as a super-dense white dwarf star.  Any biology in our solar system would have been destroyed long before that.

But Proxima Centauri, one of those very long-lived stars?

“It will be there a very long time,” he said.  “If the conditions are right, then maybe a time will come to migrate to any planets that might be around Proxima.  It’s four light years away, so it would take generations of humans to get there.  Certainly very difficult, but some day in the far future people may be faced with an alternative that’s considerably worse.”

 

 

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

The Pale Red Dot Campaign

Facebooktwittergoogle_plusredditpinterestlinkedinmail
Alpha and Beta Centauri are the bright stars; Proxima Centauri is the small, faint one circles in red.
Alpha Centauri A and B are the bright stars; Proxima Centauri, a red dwarf star, is the small, faint one circled in red. (NASA, Julia Figliotti)

Astronomers have been trying for decades to find a planet orbiting Proxima Centauri, the star closest to our sun and so a natural and tempting target.  Claims of an exoplanet discovery have been made before, but so far none have held up.

Now, in a novel and very public way, a group of European astronomers have initiated a focused effort to change all that with their Pale Red Dot Campaign.  Based at the La Silla Observatory in Chile, and supported by  networks of smaller telescopes around the world, they will over the next three months observe Proxima and its environs and then will spend many more months analayzing all that they find.

And in an effort to raise both knowledge and excitement, the team will tell the world what they’re doing and finding over Twitter, Facebook, blogs and other social and traditional media of all kind.

“We have reason to be hopeful about finding a planet, but we really don’t know what will happen,” said Guillem Anglada-Escudé  of Queen Mary University, London, one of the campaign organizers.  “People will have an opportunity to learn how astronomers do their work finding exoplanets, and they’ll be able to follow our progress.  If we succeed, that would be wonderful and important.  And if no planet is detected, that’s very important too.”

The Pale Blue Dot, as photographed by Voyager 1 (NASA)
The Pale Blue Dot, as photographed by Voyager 1 (NASA)

The name of the campaign is, of course, a reference to the iconic “Pale Blue Dot” image of Earth taken by the Voyager 1 spacecraft in 1990, when it was well beyond Pluto.  The image came to symbolize our tiny but precious place in the galaxy and universe.

But rather than potentially finding a pale blue dot, any planet orbiting the red dwarf star Proxima Centauri would reflect the reddish light of the the star, which lies some 4.2 light years away from our solar system.  Proxima — as well as 20 of the 30 stars in our closest  neighborhood — is reddish because it is considerably smaller and less luminous than a star like our sun.

Anglada-Escudé said he is cautiously optimistic about finding a planet because of earlier Proxima observations that he and colleagues made at the same observatory.  That data, he said, suggested the presence of a planet 1.2 to 1.5 times the size of Earth, within the habitable zone of the star.

“We did not and are not making claims in terms of having discovered a planet,”  he said.  “We’re saying that we detected signals that could mean there is a planet.  This is why we’ve planned this campaign — to see if the signal is telling us something real.”  He described the campaign as a “partnership between scientists involved in the observations and European Southern Observatory.”

Even without a previous signal, it’s a reasonable bet that Proxima does have at least one planet orbiting it.  Based on the results of the Kepler Space Telescope survey in particular, there is a consensus of sorts in the astronomy community that on average, every star has at least one planet circling it.

Alpha Centauri A and Alpha Centauri B are a binary pair, while Proxima Centauri is far away but is xxx
Alpha Centauri A, Alpha Centauri B and Proxima Centauri make up a three-star system, although Proxima Centauri is a distant .2 lightyears away rom the other two.  (Ian Morrison)

Paul Butler, a pioneer in planet hunting at the Carnegie Institution of Washington who has done extensive observing of Proxima with his team at Las Campanas Observatory in Chile, will be providing data to the Pale Red Dot campaign.  Proxima search results from the ESO’s Very Large Telescope at Paranal, Chile, will also be provided to campaign.

Butler said that in some ways Proxima “is the most exciting star in the sky.  It’s the very nearest star and so the discovery of a planet there would be huge – front page of the paper around the world.”

What’s more, he said, such a discovery could be enormously helpful in motivating Congress and taxpayers to spend the money needed for what is considered the holy grail of planet hunting — building a space-based exoplanet observatory that could directly image exoplanets.  “We have to give people a clear reasons to spend all that money and finding a potentially habitable planet around Proxima, that would be it.”

 Hubble Space Telescope image is our closest stellar neighbour: Proxima Centauri, just over four light-years from Earth. Although it looks bright through the eye of Hubble, Proxima Centauri -- with only about one eight the mass of our sun -- is not visible to the naked eye.Shining brightly in this Hubble image is our closest stellar neighbour: Proxima Centauri. Proxima Centauri lies in the constellation of Centaurus (The Centaur), just over four light-years from Earth. Although it looks bright through the eye of Hubble, as you might expect from the nearest star to the Solar System, Proxima Centauri is not visible to the naked eye. Its average luminosity is very low, and it is quite small compared to other stars, at only about an eighth of the mass of the Sun. However, on occasion, its brightness increases. Proxima is what is known as a “flare star”, meaning that convection processes within the star’s body make it prone to random and dramatic changes in brightness. The convection processes not only trigger brilliant bursts of starlight but, combined with other factors, mean that Proxima Centauri is in for a very long life. Astronomers predict that this star will remain middle-aged — or a “main sequence” star in astronomical terms — for another four trillion years, some 300 times the age of the current Universe. These observations were taken using Hubble’s Wide Field and Planetary Camera 2 (WFPC2). Proxima Centauri is actually part of a triple star system — its two companions, Alpha Centauri A and B, lie out of frame. Although by cosmic standards it is a close neighbour, Proxima Centauri remains a point-like object even using Hubble’s eagle-eyed vision, hinting at the vast scale of the Universe around us.
A Hubble Space Telescope image of Proxima Centauri, just over four light-years from Earth. Proxima Centauri — with only about one eight the mass of our sun — is not visible to the naked eye. Its average luminosity is very low but, on occasion, its brightness increases. Proxima is what is known as a “flare star” — where convection processes within the star’s make it prone to random and dramatic changes in brightness. (NASA)

Proxima and the other Alpha Centauri stars are also an especially appealing target because they have loomed so large in science fiction.  From Robert Heinlein’s “Ophans of the Sky” stories of crews traveling to Proxima to Isaac Asimov’s “Foundation and Earth ” set around Alpha Centauri and more recently to the James Cameron’s movie “Avatar,” also set in the Centauri neighborhood, these closer-by have been a frequent and logical destination.

While Alpha Centauri B has gotten much scientific attention in recent years with a reported but still unconfirmed and now often dismissed planet candidate, Proxima Centauri has been the object of much observation, too, and that has begun to define what kinds of planets might and might not be present.

So far, the work of Butler’s team has not found any particularly promising signs of a planetary-caused Proxima wobble.  But he said nothing established so far about Proxima rules out the presence of a small planet relatively close to the sun — the very time-consuming observations needed to potentially detect that size planet just haven’t been done.

Similarly, the Very Large Telescope results ruled out the presence of Saturn-size planets with many-year orbits and Neptune-size planets with orbits less than about 40 day, and no planets more than 6 to 10 Earths in the habitable zone.  This is actually promising news, since the absence of larger planets in the habitable zone leaves the field open for smaller ones.

Two other teams are now focused on Proxima as well.  One is led by David Kipping of Columbia University  using the Canadian Microvariability & Oscillations of STars space telescope (MOST) to search for transits.  The other is led by Kailash Sahu of the Space Science Telescope Institute in Baltimore, using the Hubble Space Telescope for micro-lensing of the star. The stars are aligned for the microlensing event this month.

 

A ring of telescopes at ESO's La Silla observatory. La Silla, in the southern part of the Atacama desert, 600 km north of Santiago de Chile, was ESO's first observation site. The telescopes are 2400 metres above sea level, providing excellent observing conditions. ESO operates the 3.6-m telescope, the New Technology Telescope (NTT), and the 2.2-m Max-Planck-ESO telescope at La Silla. La Silla also hosts national telescopes, such as the 1.2-m Swiss Telescope and the 1.5-m Danish Telescope.
A ring of telescopes at ESO’s La Silla observatory. La Silla, in the southern part of the Atacama desert, 600 km north of Santiago de Chile, was ESO’s first observation site. The telescopes are 2400 metres above sea level, providing excellent observing conditions. ESO operates the 3.6-m telescope, the New Technology Telescope (NTT), and the 2.2-m Max-Planck-ESO telescope at La Silla. La Silla also hosts national telescopes, such as the 1.2-m Swiss Telescope and the 1.5-m Danish Telescope. (ESO)

The Pale Red Dot observing began last week and will run for two and a half month using the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph at the European Southern Observatory (ESO) telescope at La Silla, Chile. The observations — like those made at the Magellan and at Paranal — look for tiny wobbles in the star’s motion created by the gravitational pull of an orbiting planet. (More on how the radial velocity method works, as well as other connections to and details about the campaign can be found at:  https://palereddot.org/introduction/)

The campaign is the beneficiary of a substantial amount of HARPS observing time — 25 minutes of observing for 60 nights in a row — which is essential to confidently detect the presence of a small, Earth-sized planet.

Other robotic telescopes — including the Burst Optical Observer and Transient Exploring System,  the Las Cumbres Observatory Global Telescope Network and the Astrograph for the Southern Hemisphere II — will participate.  The role of these automated telescopes is to measure the brightness of Proxima each night, a backup that will help astronomers determine whether the wobbles of the star detected via radial velocity are the tug of an orbiting planet or activity on the surface of the star. Anglada-Escudé said that after a full analysis, the findings will offered to a peer-reviewed journal and published.

While the goal of the campaign is definitely to detect a planet orbiting our closest stellar neighbor, it is also very consciously a public outreach effort for astronomy and exoplanets.  Everything about the campaign will be made public, and often immediately via Twitter and other social media.  It will provide a window, said Anglada-Escudé, into how planet-hunting astronomy works.

Guillem Anglada-Escude
Guillem Anglada-Escudé is leading the Pale Red Dot campaign.

“We think this to be a good way to explain things that are not obvious to the public, to show them that looking for planets is not always excitement and ‘eurekas.’   We’ll show life at the observatory, how our observations are made, what happens as we analyze the data.  And if in the end we don’t find evidence of a planet, we will have shown how we search for such tiny objects so far away, and do it with a pretty amazing precision.”

Involving the public so early and often definitely brings risks, since the campaign could certainly come up empty-handed.  But in terms of real-life planet hunting, that result is hardly unusual.  An awful lot of planet-hunting campaigns end without a detection.

When red dwarf stars, also called M dwarfs, are found with orbiting planets, they tend to be much closer in than with more massive stars, and their habitable zones are also much more narrow.  Initially, red dwarfs were not considered good candidates for habitable planets because they are so relatively small — between 50 to 5 percent the mass of our sun.  Any planets orbiting close to a red dwarf would likely be tidally locked as well, with only one side ever facing the sun.  The pull of the host star causes the locking.

These issues and more earlier led scientists to dismiss red dwarf exoplanets as unlikely to be habitable. That unpromising view has changed with the creation of models for tidally locked planets that could be habitable, and with the discovery of many exoplanets orbiting around the red dwarfs.  These small suns actually  constitute more than 70 percent of the stars in the sky, although very few of the ones you can see without a telescope.

So the time seems ripe for a substantial exoplanet campaign at Proxima — one that just might find a planet and that certainly has a lot to teach the public.

Sites where you can follow the campaign:
Twitter: @Pale_red_dot #palereddot
Facebook page:  ‘Pale Red Dot’

 Artist rendering of a cold desert on a planet orbiting Proxima Centauri. (Vladimir Romanyuk, Space Engine)
Artist rendering of a cold desert on a planet orbiting Proxima Centauri. (Vladimir Romanyuk, Space Engine)
Facebooktwittergoogle_plusredditpinterestlinkedinmail